Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt- and osmotic stress in Arabidopsis
Zhou, J.; Li, F.; Wang, J-Lan.; Ma, Y.; Chong, K.; Xu, Y-yuan.
Journal of Plant Physiology 166(12): 1296-1306
2009
ISSN/ISBN: 0176-1617
PMID: 19324458
DOI: 10.1016/j.jplph.2009.02.007
Accession: 024222586
Salt stress adversely affects plant growth and development. Some plants reduce the damage of high-salt stress by expressing a series of salt-responsive genes. Studies of the molecular mechanism of the salt-stress response have focused on the characterization of components involved in signal perception and transduction.
PDF emailed within 0-6 h: $19.90
Related References
Xu, W.; Zhang, N.; Jiao, Y.; Li, R.; Xiao, D.; Wang, Z. 2014: The grapevine basic helix-loop-helix (bHLH) transcription factor positively modulates CBF-pathway and confers tolerance to cold-stress in Arabidopsis Molecular Biology Reports 41(8): 5329-5342Zhiponova, M.K.; Morohashi, K.; Vanhoutte, I.; Machemer-Noonan, K.; Revalska, M.; Van Montagu, M.; Grotewold, E.; Russinova, E. 2014: Helix-loop-helix/basic helix-loop-helix transcription factor network represses cell elongation in Arabidopsis through an apparent incoherent feed-forward loop Proceedings of the National Academy of Sciences of the United States of America 111(7): 2824-2829
Li, X.; Duan, X.; Jiang, H.; Sun, Y.; Tang, Y.; Yuan, Z.; Guo, J.; Liang, W.; Chen, L.; Yin, J.; Ma, H.; Wang, J.; Zhang, D. 2006: Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis Plant Physiology 141(4): 1167-1184
Smolen, G.A.; Pawlowski, L.; Wilensky, S.E.; Bender, J. 2002: Dominant alleles of the basic helix-loop-helix transcription factor ATR2 activate stress-responsive genes in Arabidopsis Genetics 161(3): 1235-1246
Kiribuchi, K.; Jikumaru, Y.; Kaku, H.; Minami, E.; Hasegawa, M.; Kodama, O.; Seto, H.; Okada, K.; Nojiri, H.; Yamane, H. 2005: Involvement of the basic helix-loop-helix transcription factor RERJ1 in wounding and drought stress responses in rice plants Bioscience Biotechnology and Biochemistry 69(5): 1042-1044
Uittenbogaard, M.; Baxter, K.K.; Chiaramello, A. 2010: The neurogenic basic helix-loop-helix transcription factor NeuroD6 confers tolerance to oxidative stress by triggering an antioxidant response and sustaining the mitochondrial biomass Asn Neuro 2(2): E00034
Chen, Y.; Li, F.; Ma, Y.; Chong, K.; Xu, Y. 2013: Overexpression of OrbHLH001, a putative helix-loop-helix transcription factor, causes increased expression of AKT1 and maintains ionic balance under salt stress in rice Journal of Plant Physiology 170(1): 93-100
Zuo, Z.-F.; Kang, H.-G.; Hong, Q.-C.; Park, M.-Y.; Sun, H.-J.; Kim, J.; Song, P.-S.; Lee, H.-Y. 2020: A novel basic helix-loop-helix transcription factor, ZjICE2 from Zoysia japonica confers abiotic stress tolerance to transgenic plants via activating the DREB/CBF regulon and enhancing ROS scavenging Plant Molecular Biology 102(4-5): 447-462
Toledo-Ortiz, G.; Huq, E.; Quail, P.H. 2003: The Arabidopsis basic/helix-loop-helix transcription factor family Plant Cell 15(8): 1749-1770
Bailey, P.C.; Martin, C.; Toledo-Ortiz, G.; Quail, P.H.; Huq, E.; Heim, M.A.; Jakoby, M.; Werber, M.; Weisshaar, B. 2003: Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana Plant Cell 15(11): 2497-2502
Paul C.Bailey, C.M.,G.T.-O.,P.H.Q.,E.H.,M.A.H.,M.J.,M.W.and 2003: Update on the Basic Helix-Loop-Helix Transcription Factor Gene Family in Arabidopsis thaliana The Plant Cell 15(11): 2497-2501
Ted Clack, A.S.,M.M.,P.L.,M.F.andR.A.S. 2009: Obligate Heterodimerization of Arabidopsis Phytochromes C and E and Interaction with the Pif3 Basic Helix-Loop-Helix Transcription Factor The Plant Cell 21(3): 786-799
Clack, T.; Shokry, A.; Moffet, M.; Liu, P.; Faul, M.; Sharrock, R.A. 2009: Obligate heterodimerization of Arabidopsis phytochromes C and e and interaction with the PIF3 basic helix-loop-helix transcription factor Plant Cell 21(3): 786-799
Kang, H.; Oh, E.; Choi, G.; Lee, D. 2010: Genome-wide DNA-binding specificity of PIL5, an Arabidopsis basic Helix-Loop-Helix (bHLH) transcription factor International Journal of Data Mining and Bioinformatics 4(5): 588-599
Tanabe, N.; Noshi, M.; Mori, D.; Nozawa, K.; Tamoi, M.; Shigeoka, S. 2019: The basic helix-loop-helix transcription factor, bHLH11 functions in the iron-uptake system in Arabidopsis thaliana Journal of Plant Research 132(1): 93-105
Hachez, C.; Ohashi-Ito, K.; Dong, J.; Bergmann, D.C. 2011: Differentiation of Arabidopsis guard cells: analysis of the networks incorporating the basic helix-loop-helix transcription factor, FAMA Plant Physiology 155(3): 1458-1472
Yadav, V.; Mallappa, C.; Gangappa, S.N.; Bhatia, S.; Chattopadhyay, S. 2005: A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth Plant Cell 17(7): 1953-1966
Jang, Y.-H.; Park, J.-R.; Kim, E.-G.; Kim, K.-M. 2022: OsbHLHq11, the Basic Helix-Loop-Helix Transcription Factor, Involved in Regulation of Chlorophyll Content in Rice Biology 11(7)
Bao, M.; Bian, H.; Zha, Y.; Li, F.; Sun, Y.; Bai, B.; Chen, Z.; Wang, J.; Zhu, M.; Han, N. 2014: MiR396a-Mediated basic helix-loop-helix transcription factor bHLH74 repression acts as a regulator for root growth in Arabidopsis seedlings Plant and Cell Physiology 55(7): 1343-1353
Wang, K.; Li, M.-Q.; Chang, Y.-P.; Zhang, B.; Zhao, Q.-Z.; Zhao, W.-L. 2020: The basic helix-loop-helix transcription factor OsBLR1 regulates leaf angle in rice via brassinosteroid signalling Plant Molecular Biology 102(6): 589-602