Production of strains of saccharomyces resistant to ethyl mono bromacetate
Turtura, G.C.
Annali di Microbiologia ed Enzimologia 17(2/3): 71-78
1967
ISSN/ISBN: 0003-4649 Accession: 025299748
Full Text Article emailed within 1 workday: $29.90
Related References
Royer, J.; Gainet, F. 1973: Ocular effects of tear gases containing ethyl bromacetate Bulletin des Societes d'Ophtalmologie de France 73(12): 1165-1171Tohoyama, H.; Inouhe, M.; Joho, M.; Murayama, T. 1995: Production of metallothionein in copper- and cadmium-resistant strains of Saccharomyces cerevisiae Journal of Industrial Microbiology 14(2): 126-131
Van Nuland, Y.M.; Eggink, G.; Weusthuis, R.A. 2017: Combination of ester biosynthesis and ω-oxidation for production of mono-ethyl dicarboxylic acids and di-ethyl esters in a whole-cell biocatalytic setup with Escherichia coli Microbial Cell Factories 16(1): 185
Field, S.J.; Ryden, P.; Wilson, D.; James, S.A.; Roberts, I.N.; Richardson, D.J.; Waldron, K.W.; Clarke, T.A. 2015: Identification of furfural resistant strains of Saccharomyces cerevisiae and Saccharomyces paradoxus from a collection of environmental and industrial isolates Biotechnology for Biofuels 8: 33
Alikhanyan, S.; Nalbandyan, G.; Avakyan, B. 1971: Selection of wine yeasts using mutagens. II. Creation of highly active alcohol-resistant strains of Saccharomyces ov iformis for the production of wines of the Kheres type Soviet genetics: (Transl 1974), 7 (10) 1287-1293
Argiriou, T.; Kalliafas, A.; Psarianos, C.; Kana, K.; Kanellaki, M.; Koutinas, A.A. 1992: New alcohol resistant strains of Saccharomyces cerevisiae species for potable alcohol production using molasse Applied Biochemistry and Biotechnology 36(3): 153-161
Alikhanian, S.; Nalbandian, G.; Avakian, B. 1971: Selection of vine yeasts with the use of mutagens. II. Selection of highly active, alcohol-resistant strains of saccharomyces oviformis for the production of sherry wines Genetika 7 (10) 51-58
Alikhanyan, S.I.; Nalbandyan, G.M.; Avakyan, B.P. 1971: Selection of wine yeasts with mutagens part 2 selection of highly active alcohol resistant strains of saccharomyces oviformis for the production of sherry Genetika 7(10): 51-58
Dong, J.; Wang, P.; Fu, X.; Dong, S.; Li, X.; Xiao, D. 2019: Increase ethyl acetate production in Saccharomyces cerevisiae by genetic engineering of ethyl acetate metabolic pathway Journal of Industrial Microbiology and Biotechnology 46(6): 801-808
Morales, M.L.; Fierro-Risco, J.; Callejón, R.M.; Paneque, P. 2017: Monitoring volatile compounds production throughout fermentation by Saccharomyces and non- Saccharomyces strains using headspace sorptive extraction Journal of Food Science and Technology 54(2): 538-557
Kawahara, T; Nakayama, D; Toda, K; Inagaki, S; Tanaka, K; Yasui, H 2013: Suppressive Effect of Wild Saccharomyces cerevisiae and Saccharomyces paradoxus Strains on Ige Production by Mouse Spleen Cells Food Science and Technology Research 19(6): 1019-1027
Li, E.; de Orduña, R.ón.M. 2011: Evaluation of the acetaldehyde production and degradation potential of 26 enological Saccharomyces and non-Saccharomyces yeast strains in a resting cell model system Journal of Industrial Microbiology and Biotechnology 38(9): 1391-1398
Hildenbrand, S.; Wodarz, R.; Gabrio, T.; Volland, G. 2009: Biomonitoring of the di(2-ethylhexyl) phthalate metabolites mono(2-ethyl-5-hydroxyhexyl) phthalate and mono(2-ethyl-5-oxohexyl) phthalate in children and adults during the course of time and seasons International Journal of Hygiene and Environmental Health 212(6): 679-684
Cootes, R.; Rogers, P.; Lee, T. 1979: Experimental production of fortified sweet wine by single-stage continuous fermentation. I. Evaluation of five strains of Saccharomyces cerevisiae and Saccharomyces bayanus American journal of enology and viticulture 2: 81-87
Nomeir, A.A.; Hajjar, N.P.; Hodgson, E.; Dauterman, W.C. 1980: In vitro metabolism of epn o ethyl o p nitrophenylphenyl phosphonothionate and the oxygen analog of o ethyl o p nitrophenylphenyl phosphonothionate epn in susceptible and resistant strains of house flies musca domestica Pesticide Biochemistry and Physiology 13(2): 112-120