Effect of branched-chain amino acids and L-carnitine administration on maximal physical exercise during conditions of reduced muscle glycogen
Varnier, M.; Sarto, P.; Martines, D.; Lora, L.; Naccarato, R.
Schauder, Peter, Wahren, J, Paoletti, Rodolfo, Bernardi, Roberto, Rinetti, M BRACCO R and D Monographs Series; Branched-chain amino acids Biochemistry, physiopathology, and clinical science: 253-254
1992
Accession: 031067261
PDF emailed within 1 workday: $29.90
Related References
Varnier, M.; Sarto, P.; Martines, D.; Lora, L.; Naccarato, R. 1991: Effect of branched chain amino acids bcaa and l carnitine administration on maximal physical exercise during conditions of reduced muscle glycogen content Clinical Nutrition (Edinburgh) 10(SPEC Suppl 2): 29Gualano, A.B.; Bozza, T.; Lopes De Campos, P.; Roschel, H.; Dos Santos Costa, A.; Luiz Marquezi, M.; Benatti, F.; Herbert Lancha Junior, A. 2011: Branched-chain amino acids supplementation enhances exercise capacity and lipid oxidation during endurance exercise after muscle glycogen depletion Journal of Sports Medicine and Physical Fitness 51(1): 82-88
Varnier, M.; Sarto, P.; Martines, D.; Lora, L.; Carmignoto, F.; Leese, G.P.; Naccarato, R. 1994: Effect of infusing branched-chain amino acid during incremental exercise with reduced muscle glycogen content European Journal of Applied Physiology and Occupational Physiology 69(1): 26-31
Zanker, C.L.; Swaine, I.L.; Castell, L.M.; Newsholme, E.A. 1997: Responses of plasma glutamine, free tryptophan and branched-chain amino acids to prolonged exercise after a regime designed to reduce muscle glycogen European Journal of Applied Physiology and Occupational Physiology 75(6): 543-548
Wagenmakers, A.J.M.; Van Hall, G.; Maclean, D.A.; Graham, T.E.; Saltin, B. 1994: Effect of ingestion of branched-chain amino acids and exercise on activation of the branched-chain alpha-keto acid dehydrogenase in human muscle Journal of Physiology (Cambridge) 479P: 154P
Ji, L.L.; Miller, R.H.; Nagle, F.J.; Lardy, H.A.; Stratman, F.W. 1987: Amino acid metabolism during exercise in trained rats: the potential role of carnitine in the metabolic fate of branched-chain amino acids Metabolism, Clinical and Experimental 36(8): 748-752
Howatson, G.; Hoad, M.; Goodall, S.; Tallent, J.; Bell, P.G.; French, D.N. 2012: Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study Journal of the International Society of Sports Nutrition 9: 20
Lysenko, E.A.; Vepkhvadze, T.F.; Lednev, E.M.; Vinogradova, O.L.; Popov, D.V. 2018: Branched-chain amino acids administration suppresses endurance exercise-related activation of ubiquitin proteasome signaling in trained human skeletal muscle Journal of Physiological Sciences: Jps 68(1): 43-53
Blomstrand, E.; Hassmén, P.; Ekblom, B.; Newsholme, E.A. 1991: Administration of branched-chain amino acids during sustained exercise--effects on performance and on plasma concentration of some amino acids European Journal of Applied Physiology and Occupational Physiology 63(2): 83-88
Blomstrand, E.; Hassmen, P.; Ekblom, B.; Newsholme, E.A. 1991: Administration of branched-chain amino acids during sustained exercise effects on performance and on plasma concentration of some amino acids European Journal of Applied Physiology 63(2): 83-88
Paul, H.; Adibi, S. 1977: Effect of carnitine on oxidation of branched chain amino acids by liver and skeletal muscle Federation Proceedings 36(3): 528
Blomstrand, E.; Ek, S.; Newsholme, E.A. 1996: Influence of ingesting a solution of branched-chain amino acids on plasma and muscle concentrations of amino acids during prolonged submaximal exercise Nutrition 12(7-8): 485-490
Veerkamp, J.H.; van Moerkerk, H.T.; Wagenmakers, A.J. 1985: Interaction of short-chain and branched-chain fatty acids and their carnitine and CoA esters and of various metabolites and agents with branched-chain 2-oxo acid oxidation in rat muscle and liver mitochondria International Journal of Biochemistry 17(9): 967-974
Shimomura, Y.; Murakami, T.; Nakai, N.; Nagasaki, M.; Obayashi, M.; Li, Z.; Xu, M.; Sato, Y.; Kato, T.; Shimomura, N.; Fujitsuka, N.; Tanaka, K.; Sato, M. 2000: Suppression of glycogen consumption during acute exercise by dietary branched-chain amino acids in rats Journal of Nutritional Science and Vitaminology 46(2): 71-77
Senden, J.M.G.; Van Hall, G.; Saltin, B.; Wagenmakers, A.J.M. 1995: Branched-chain amino acid metabolism during prolonged one leg exercise in muscle with a normal and low glycogen content Medicine and Science in Sports and Exercise 27(5 Suppl): S219
De Palo, E.F.; Metus, P.; Gatti, R.; Previti, O.; Bigon, L.; De Palo, C.B. 1993: Branched chain amino acids chronic treatment and muscular exercise performance in athletes: a study through plasma acetyl-carnitine levels Amino Acids 4(3): 255-266
Margolis, L.M.; Karl, J.P.; Wilson, M.A.; Coleman, J.L.; Whitney, C.C.; Pasiakos, S.M. 2021: Serum Branched-Chain Amino Acid Metabolites Increase in Males when Aerobic Exercise Is Initiated with Low Muscle Glycogen Metabolites 11(12)
Verger, P.; Aymard, P.; Cynobert, L.; Anton, G.; Luigi, R. 1994: Effects of administration of branched-chain amino acids vs. glucose during acute exercise in the rat Physiology and Behavior 55(3): 523-526
de Araujo, J.A.; Falavigna, G.; Rogero, M.M.; Pires, I.S.O.; Pedrosa, R.G.; Castro, I.A.; Donato, J.; Tirapegui, J. 2006: Effect of chronic supplementation with branched-chain amino acids on the performance and hepatic and muscle glycogen content in trained rats Life Sciences 79(14): 1343-1348
1983: Muscle protein catabolism in cirrhotic patients reduced by branched-chain amino acids Nutrition reviews 41(5): 146-149