Injection of fluororuby into the nude rat spinal cord leads to an unusual cellular infiltrate that may enhance neuronal regeneration following spinal cord injury
Guest, J.D.; Akong, K.A.; Bunge, M.B.
Journal of Neurotrauma 15(1): 46
1998
ISSN/ISBN: 0897-7151 Accession: 031958797
Full Text Article emailed within 1 workday: $29.90
Related References
Zhang, Y.; Hu, H.; Tian, T.; Zhang, L.; Zhao, D.; Wu, Q.; Chang, Y.; Wang, Q.; Zhou, S.; Feng, G.; Huang, F. 2015: Mst3b promotes spinal cord neuronal regeneration by promoting growth cone branching out in spinal cord injury rats Molecular Neurobiology 51(3): 1144-1157Petrovicky, O. 1952: Unusual case of fatal injury to the spinal cord; contribution to the traumatology of the spinal cord and the spine; problem of physiology of spinal cord block Casopis Lekaru Ceskych 91(3): 83-87
Friedman, J.A.; Lewellyn, E.B.; Moore, M.J.; Schermerhorn, T.C.; Knight, A.M.; Currier, B.L.; Yaszemski, M.J.; Ameenuddin, S.; Windebank, A.J. 2004: Synthes Award for Resident Research in Spinal Cord & Spinal Column Injury: Surgical repair of the injured spinal cord using biodegradable polymer implants to facilitate axon regeneration Clinical neurosurgery 51: 314-319
Lu, J.; Ashwell, K.W.; Hayek, R.; Waite, P. 2001: Fluororuby as a marker for detection of acute axonal injury in rat spinal cord Brain Research 915(1): 118-123
Breivik, H. 2017: New knowledge reduces risk of damage to spinal cord from spinal haematoma after epidural- or spinal-analgesia and from spinal cord stimulator leads Scandinavian Journal of Pain 15: 115-117
Kiss Bimbova, K.; Bacova, M.; Kisucka, A.; Gálik, J.án.; Ileninova, M.; Kuruc, T.; Magurova, M.; Lukacova, N. 2023: Impact of Endurance Training on Regeneration of Axons, Glial Cells, and Inhibitory Neurons after Spinal Cord Injury: a Link between Functional Outcome and Regeneration Potential within the Lesion Site and in Adjacent Spinal Cord Tissue International Journal of Molecular Sciences 24(10)
Broude, E.; McAtee, M.; Kelley, M.S.; Bregman, B.S. 1999: Fetal spinal cord transplants and exogenous neurotrophic support enhance c-Jun expression in mature axotomized neurons after spinal cord injury Experimental Neurology 155(1): 65-78
Kunkel-Bagden, E.; Bregman, B.S. 1990: Spinal cord transplants enhance the recovery of locomotor function after spinal cord injury at birth Experimental Brain Research 81(1): 25-34
Ridler, C. 2018: Spinal cord injury: Human neural stem cells elicit regeneration after spinal cord injury in monkeys Nature Reviews. Neurology 14(5): 252
Leppanen, R.E. 2005: Spinal cord injury changes caudal segmental spinal cord excitability resulting in changes to spinal cord signal processing and modulation of late response recordings Spine Journal: Official Journal of the North American Spine Society 5(1): 115-117
Zhang, D.; Wang, Q.; Wang, S.; Huang, Y.; Tian, N.; Wu, Y.; Wu, Y.; Zhou, Y.; Xu, H.; Zhang, X. 2019: Astragoloside IV Loaded Polycaprolactone Membrane Repairs Blood Spinal Cord Barrier and Recovers Spinal Cord Function in Traumatic Spinal Cord Injury Journal of Biomedical Nanotechnology 15(4): 799-812
Guest, J.D.; Bunge, R.P. 1994: Human Schwann cells can enhance axonal regeneration and myelination in the nude rat spinal cord Society for Neuroscience Abstracts 20(1-2): 1111
Katayama, Y.; Tsubokawa, T.; Sugitani, M.; Maejima, S.; Hirayama, T.; Yamamoto, T. 1986: Assessment of spinal cord injury with multimodality evoked spinal cord potentials. I: Localization of lesions in experimental spinal cord injury Neuro-Orthopedics 1(2): 130-141
Xu, B.; Liu, D.; Liu, W.; Long, G.; Liu, W.; Wu, Y.; He, X.; Shen, Y.; Jiang, P.; Yin, M.; Fan, Y.; Shen, H.; Shi, L.; Zhang, Q.; Xue, W.; Jin, C.; Chen, Z.; Chen, B.; Li, J.; Hu, Y.; Li, X.; Xiao, Z.; Zhao, Y.; Dai, J. 2023: Engineered human spinal cord-like tissues with dorsal and ventral neuronal progenitors for spinal cord injury repair in rats and monkeys Bioactive Materials 27: 125-137
Tuszynski, M.; Edgerton, R.; Dobkin, B. 1999: Recovery of locomotion after experimental spinal cord injury: axonal regeneration or modulation of intrinsic spinal cord walking circuitry? Journal of Spinal Cord Medicine 22(2): 143
Tuszynski, M; Edgerton, R; Dobkin, B 1999: Recovery of Locomotion After Experimental Spinal Cord Injury: Axonal Regeneration or Modulation of Intrinsic Spinal Cord Walking Circuitry? Journal of Spinal Cord Medicine 22(2): 143-143
Chen, C.; Bai, G-Chao.; Jin, H-Liang.; Lei, K.; Li, K-Xin. 2018: Local injection of bone morphogenetic protein 7 promotes neuronal regeneration and motor function recovery after acute spinal cord injury Neural Regeneration Research 13(6): 1054-1060
Maejima, S.; Katayama, Y.; Hirayama, T.; Sugitani, M.; Yamamoto, T.; Tsubokawa, T. 1986: Transcranially evoked spinal cord potential part ii. responses to experimental spinal cord injury in comparison with other spinal cord potentials Nihon University Journal of Medicine 28(6): 449-458
Wang, Z.; Huang, J.; Liu, C.; Liu, L.; Shen, Y.; Shen, C.; Liu, C. 2019: BAF45D Downregulation in Spinal Cord Ependymal Cells Following Spinal Cord Injury in Adult Rats and its Potential Role in the Development of Neuronal Lesions Frontiers in Neuroscience 13: 1151
Isu, T.; Iwasaki, Y.; Akino, M.; Abe, H. 1989: Spinal cord evoked potential in experimental spinal cord injury: the changes of spinal cord evoked potential following impact injury, and the correlation between the change in amplitude of the spinal cord evoked potential after injury and the prognosis for motor recovery of legs No Shinkei Geka. Neurological Surgery 17(7): 629-634