Engineering of a functional human NADH-dependent cytochrome P450 system Alteration of nicotinamide co-factor binding in cytochrome P450 reductase by site directed mutagenesis
Doehr, O.; Paine, M.J.I.; Flanagan, J.U.; Wolf, C.R.
Naunyn-Schmiedeberg's Archives of Pharmacology 363(4): R135
2001
ISSN/ISBN: 0028-1298 Accession: 034854704
PDF emailed within 1 workday: $29.90
Related References
Fujimoto, Y.; Shirabe, K.; Nagai, T.; Yubisui, T.; Takeshita, M. 1993: Role of Lys-110 of human NADH-cytochrome b5 reductase in NADH binding as probed by site-directed mutagenesis Febs Letters 322(1): 30-32Shirabe, K.; Yubisiu, T.; Nishino, T.; Takeshita, M. 1991: Role of cysteine residues in human NADH-cytochrome b5 reductase studies by site-directed mutagenesis : cys-273 and cys-288 are located close to the NADH-binding site but not catalytically essential Journal of Biological Chemistry 266(12): 7531-7536
Shirabe, K.; Yubisui, T.; Nishino, T.; Takeshita, M. 1991: Role of cysteine residues in human NADH-cytochrome b5 reductase studied by site-directed mutagenesis. Cys-273 and Cys-283 are located close to the NADH-binding site but are not catalytically essential Journal of Biological Chemistry 266(12): 7531-7536
Strittmatter, P.; Kittler, J.M.; Coghill, J.E. 1992: Characterization of the role of lysine 110 of NADH-cytochrome b5 reductase in the binding of oxidation of NADH by site-directed mutagenesis Journal of Biological Chemistry 267: 164-167
Strittmatter, P.; Kittler, J.M.; Coghill, J.E. 1992: Characterization of the role of lysine 110 of NADH-cytochrome b5 reductase in the binding and oxidation of NADH by site-directed mutagenesis Journal of Biological Chemistry 267(28): 20164-20167
Shirabe, K.; Nagai, T.; Yubisui, T.; Takeshita, M. 1998: Electrostatic interaction between NADH-cytochrome b5 reductase and cytochrome b5 studied by site-directed mutagenesis Biochimica Et Biophysica Acta 1384(1): 16-22
Strittmatter, P.; Kittler, J.M.; Coghill, J.E.; Ozols, J. 1992: Characterization of lysyl residues of NADH-cytochrome b5 reductase implicated in charge-pairing with active-site carboxyl residues of cytochrome b5 by site-directed mutagenesis of an expression vector for the flavoprotein Journal of Biological Chemistry 267(4): 2519-2523
Strittmatter, P.; Kittler, J.M.; Coghill, J.E.; Ozols, J. 1992: Characterization of lysil residues of NADH-cytochrome b5 reductase implicated in charge-pairing with active-site carboxyl residues of cytochrome b5 by site-directed mutagenesis of an expression vector for the flavoprotein Journal of Biological Chemistry 267(4): 2519-2523
Hrycay, E.G.; Prough, R.A. 1974: Reduced nicotinamide adenine dinucleotide-cytochrome b5 reductase and cytochrome b5 as electron carriers in NADH-supported cytochrome P-450 -dependent enzyme activities in liver microsomes Archives of Biochemistry and Biophysics 165(1): 331-339
Prough, R.A.; Imblum, R.L.; Kouri, R.A. 1976: NADH-cytochrome c reductase activity in cultured human lymphocytes. Similarity to the liver microsomal NADH-cytochrome b5 reductase and cytochrome b5 enzyme system Archives of Biochemistry and Biophysics 176(1): 119-126
Yamaguchi, Y.; Khan, K.K.; He, Y.A.; He, Y.Q.; Halpert, J.R. 2004: Topological changes in the CYP3A4 active site probed with phenyldiazene: effect of interaction with NADPH-cytochrome P450 reductase and cytochrome b5 and of site-directed mutagenesis Drug Metabolism and Disposition: the Biological Fate of Chemicals 32(1): 155-161
Döhr, O.; Paine, M.J.; Friedberg, T.; Roberts, G.C.; Wolf, C.R. 2001: Engineering of a functional human NADH-dependent cytochrome P450 system Proceedings of the National Academy of Sciences of the United States of America 98(1): 81-86
Yubisui, T.; Shirabe, K.; Takeshita, M.; Kobayashi, Y.; Fukumaki, Y.; Sakaki, Y.; Takano, T. 1991: Structural role of serine 127 in the NADH-binding site of human NADH-cytochrome b5 reductase Journal of Biological Chemistry 266(1): 66-70
Hake, R.; Mclendon, G.; Corin, A.; Holzschu, D. 1992: Redox dependent molecular recognition in proteins site directed mutagenesis suggests that cytochrome c oxidation state governs binding and recognition to cytochrome c peroxidase Journal of the American Chemical Society 114(13): 5442-5443
Shimizu, T.; Tateishi, T.; Hatano, M.; Fujii-Kuriyama, Y. 1991: Probing the role of lysines and arginines in the catalytic function of cytochrome P450d by site-directed mutagenesis. Interaction with NADPH-cytochrome P450 reductase Journal of Biological Chemistry 266(6): 3372-3375
Amdahl, M.B.; Petersen, E.E.; Bocian, K.; Kaliszuk, S.J.; DeMartino, A.W.; Tiwari, S.; Sparacino-Watkins, C.E.; Corti, P.; Rose, J.J.; Gladwin, M.T.; Fago, A.; Tejero, J.ús. 2019: The Zebrafish Cytochrome b5/Cytochrome b5 Reductase/NADH System Efficiently Reduces Cytoglobins 1 and 2: Conserved Activity of Cytochrome b5/Cytochrome b5 Reductases during Vertebrate Evolution Biochemistry 58(29): 3212-3223
Leesch, V.W.; Bujons, J.; Mauk, A.G.; Hoffman, B.M. 1999: Perturbation of the binding between cytochrome c and cytochrome c peroxidase using site-directed mutagenesis Journal of Inorganic Biochemistry 74(1-4): 204
Leesch, V.W.; Bujons, J.; Mauk, A.G.; Hoffman, B.M. 2000: Cytochrome c peroxidase-cytochrome c complex: locating the second binding domain on cytochrome c peroxidase with site-directed mutagenesis Biochemistry 39(33): 10132-10139
Speno, H.S.; Taheri, M.R.; Martin, C.T. 1994: Site directed mutagenesis of proposed Cu-A ligands His-161, Cys-196, Cys-200, His-204 and of Glu-198, implicated in cytochrome c binding to cytochrome c oxidase Biophysical Journal 66(2 Part 2): A361
Witt, H.; Zickermann, V.; Ludwig, B. 1995: Site-directed mutagenesis of cytochrome c oxidase reveals two acidic residues involved in the binding of cytochrome c Biochimica et Biophysica Acta 1230(1-2): 74-76