Glutamate-mediated CA++ influx and nuclear damage in retinal ganglion cells purified by panning Role of glia
Decoster, M.A.; Bazan, N.G.
Journal of Neurochemistry 81(Suppl 1): 101
2002
ISSN/ISBN: 0022-3042
DOI: 10.1046/j.1471-4159.81.s1.40_3.x
Accession: 034997900
PDF emailed within 0-6 h: $19.90
Related References
Barres, B.A.; Silverstein, B.E.; Corey, D.P.; Chun, L.L. 1988: Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning Neuron 1(9): 791-803Leinders-Zufall, T.; Rand, M.N.; Waxman, S.G.; Kocsis, J.D. 1994: Differential role of two Ca(2+)-permeable non-NMDA glutamate channels in rat retinal ganglion cells: kainate-induced cytoplasmic and nuclear Ca2+ signals Journal of Neurophysiology 72(5): 2503-2516
MacLaren, R.E. 1996: Development and role of retinal glia in regeneration of ganglion cells following retinal injury British Journal of Ophthalmology 80(5): 458-464
Hartwick, A.T.E.; Lalonde, Mélanie.R.; Barnes, S.; Baldridge, W.H. 2004: Adenosine A1-receptor modulation of glutamate-induced calcium influx in rat retinal ganglion cells IOVS Investigative Ophthalmology and Visual Science 45(10): 3740-3748
Schmitt, H.M.; Schlamp, C.L.; Nickells, R.W. 2016: Role of HDACs in optic nerve damage-induced nuclear atrophy of retinal ganglion cells Neuroscience Letters 625: 11-15
Leinders Zufall, T.; Rand, M.N.; Waxman, S.G.; Kocsis, J.D. 1994: Differential role of two types of Ca-2+-permeable non-NMDA glutamate channels in rat retinal ganglion cells in inducing elevated cytoplasmic and nuclear Ca-2+ signals Society for Neuroscience Abstracts 20(1-2): 739
Raju, T.R.; Bennett, M.R. 1985: Retinal ganglion cells maintained by soluble factors from intrinsic retinal mueller glia but not by superior collicular glia Neuroscience Letters (Suppl 19): S92
Otori, Y.; Wei, J.Y.; Barnstable, C.J. 1998: Neurotoxic effects of low doses of glutamate on purified rat retinal ganglion cells IOVS Investigative Ophthalmology and Visual Science 39(6): 972-981
Kitano, S.; Caprioli, J.; Cummins, D. 1992: Co-culture with Muller glia protects retinal ganglion cells from excitotoxic and hypoxic damage Experimental Eye Research 55(Suppl 1): S245
Marcheselli, V.L.; Decoster, M.A.; Campbell, Z.; Barreiro, S.G.; Bazan, N.G. 2001: Neuroprotection by unoprostone, but not by latanoprost, against glutamate-stimulated calcium influx and cell death in retinal ganglion cells IOVS Investigative Ophthalmology and Visual Science 42(4): S750
Otori, Y.; Morimura, H.; Tano, Y. 2000: Protective effects of nilvadipine against glutamate neurotoxicity on purified rat retinal ganglion cells IOVS Investigative Ophthalmology and Visual Science 41(4): S190
Otori, Y.; Kusaka, S.; Kawasaki, A.; Morimura, H.; Miki, A.; Tano, Y. 2003: Protective effect of nilvadipine against glutamate neurotoxicity in purified retinal ganglion cells Brain Research 961(2): 213-219
Lebrun-Julien, F.éd.ér.; Morquette, B.; Douillette, A.; Saragovi, H.U.; Di Polo, A. 2009: Inhibition of p75(NTR) in glia potentiates TrkA-mediated survival of injured retinal ganglion cells Molecular and Cellular Neurosciences 40(4): 410-420
Shinya, M.; Mukai, S.; Shoge, K.; Mishima, H.K.; Ishihara, K.; Sasa, M. 1999: Non-N-methyl-D-aspartate receptors-mediated influx of Ca2+ in cultured rat retinal ganglion cells Japanese Journal of Pharmacology 79(Suppl 1): 143P
Lee, K.Y.C.; Nakayama, M.; Aihara, M.; Chen, Y.-N.; Araie, M. 2010: Brimonidine is neuroprotective against glutamate-induced neurotoxicity, oxidative stress, and hypoxia in purified rat retinal ganglion cells Molecular Vision 16: 246-251