Growth inhibition, cell-cycle dysregulation, and induction of apoptosis by green tea constituent (-) -epigallocatechin-3-gallate in androgen-sensitive and androgen-insensitive human prostate carcinoma cells

Gupta, S.; Ahmad, N.; Nieminen, A.L.; Mukhtar, H.

Toxicology and Applied Pharmacology 164(1): 82-90

2000


ISSN/ISBN: 0041-008X
PMID: 10739747
DOI: 10.1006/taap.1999.8885
Accession: 035005914

Download citation:  
Text
  |  
BibTeX
  |  
RIS

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Abstract
Prostate cancer (PCA) is the most prevalent cancer diagnosed and the second leading cause of cancer-related deaths among men in the United States. Descriptive epidemiological data suggest that androgens and environmental exposures play a key role in prostatic carcinogenesis. Since androgen action is intimately associated with proliferation and differentiation, at the time of clinical diagnosis in humans most PCA represent themselves as a mixture of androgen-sensitive and androgen-insensitive cells. Androgen-sensitive cells undergo rapid apoptosis upon androgen withdrawal. On the other hand, the androgen-insensitive cells do not undergo apoptosis upon androgen blocking, but maintain the molecular machinery of apoptosis. Thus, agents capable of inhibiting growth and/or inducing apoptosis in both androgen-sensitive and androgen-insensitive cells will be useful for the management of PCA. In the present study, we show that (-)-epigallocatechin-3-gallate (EGCG), the major polyphenolic constituent present in green tea, imparts antiproliferative effects against both androgen-sensitive and androgen-insensitive human PCA cells, and this effect is mediated by deregulation in cell cycle and induction of apoptosis. EGCG treatment was found to result in a dose-dependent inhibition of cell growth in both androgen-insensitive DU145 and androgen-sensitive LNCaP cells. In both the cell types, EGCG treatment also resulted in a dose-dependent G(0)/G(1)-phase arrest of the cell cycle as observed by DNA cell-cycle analysis. As evident by DNA ladder assay, confocal microscopy, and flow cytometry, the treatment of both DU145 and LNCaP cells with EGCG resulted in a dose-dependent apoptosis. Western blot analysis revealed that EGCG treatment resulted in (i) a dose-dependent increase of p53 in LNCaP cells (carrying wild-type p53), but not in DU145 cells (carrying mutant p53), and (ii) induction of cyclin kinase inhibitor WAF1/p21 in both cell types. These results suggest that EGCG negatively modulates PCA cell growth, by affecting mitogenesis as well as inducing apoptosis, in cell-type-specific manner which may be mediated by WAF1/p21-caused G(0)/G(1)-phase cell-cycle arrest, irrespective of the androgen association or p53 status of the cells.

Growth inhibition, cell-cycle dysregulation, and induction of apoptosis by green tea constituent (-)-epigallocatechin-3-gallate in androgen-sensitive and androgen-insensitive human prostate carcinoma cells