Multicellular tumor spheroids: intermediates between monolayer culture and in vivo tumor
Multicellular tumor spheroids: intermediates between monolayer culture and in vivo tumor
Kunz-Schughart, L.A.
Cell Biology International 23(3): 157-161
1999
A new affinity label, 8-(4-bromo-2,3-dioxobutylthio)guanosine 5'-triphosphate (8-BDB-TGTP), has been synthesized by initial reaction of GTP to form 8-Br-GTP, followed by its conversion to 8-thio-GTP, and finally coupling with 1,4-dibromobutanedione to produce 8-BDB-TGTP. 8-BDB-TGTP and its synthetic intermediates were characterized by thin-layer chromatography, UV, (31)P NMR spectroscopy, as well as by bromide and phosphorus analysis. Escherichia coli adenylosuccinate synthetase is inactivated by 8-BDB-TGTP at pH 7.0 at 25 degrees C. Pretreatment of the enzyme with N-ethylmaleimide (NEM) blocks the exposed Cys(291) and leads to simple pseudo-first-order kinetics of inactivation. The inactivation exhibits a nonlinear relationship of initial inactivation rate versus 8-BDB-TGTP concentration, indicating the reversible association of 8-BDB-TGTP with the enzyme prior to the formation of a covalent bond. The inactivation kinetics exhibit an apparent K(I) of 115 microM and a k(max) of 0.0262 min(-1). Reaction of the NEM-treated adenylosuccinate synthetase with 8-BDB-[(3)H]TGTP results in 1 mol of reagent incorporated/mol of enzyme subunit. Adenylosuccinate or IMP plus GTP completely protects the enzyme against 8-BDB-TGTP inactivation, whereas IMP or GTP alone provide partial protection against inactivation. AMP is much less effective in protection. The results of ligand protection studies suggest that E. coli adenylosuccinate synthetase may accommodate 8-BDB-TGTP as a GTP analog. The new affinity label may be useful for identifying catalytic amino acid residues of protein proximal to the guanosine ring.