Mutations abutting arrestins molecular backbone reduce tryptophan quenching and increase tyrosine-tryptophan energy transfer
Liebman, P.A.; Wang, M.M.; Zelent, B.; Parkes, J.H.; Dinculescu, A.; Mcdowell, J.H.; Hargrave, P.A.; Smith, W.C.
IOVS Investigative Ophthalmology and Visual Science 42(4): S185
2001
ISSN/ISBN: 0146-0404 Accession: 035358286
PDF emailed within 1 workday: $29.90
Related References
Lane, J.D.; Smith, J.E.; Aprison, M.H. 1976: Comparison of free tryptophan bound tryptophan and tyrosine in plasma and tryptophan 5 hydroxy tryptophan serotonin 5 hydroxy iaa tyrosine dopamine and norepinephrine in brain parts of rat and pigeon Comparative Biochemistry and Physiology B 53(4): 469-472Kayser, V.; Chennamsetty, N.; Voynov, V.; Helk, B.; Trout, B.L. 2011: Tryptophan-tryptophan energy transfer and classification of tryptophan residues in proteins using a therapeutic monoclonal antibody as a model Journal of Fluorescence 21(1): 275-288
Xie, Y.; Yang, X.; Pu, J.; Zhao, Y.; Zhang, Y.; Xie, G.; Zheng, J.; Yuan, H.; Liao, F. 2010: Homogeneous competitive assay of ligand affinities based on quenching fluorescence of tyrosine/tryptophan residues in a protein via Főrster-resonance-energy-transfer Spectrochimica Acta. Part a Molecular and Biomolecular Spectroscopy 77(4): 869-876
Lane, J.D.; Smith, J.E.; Aprison, M.H. 1976: Comparison of free tryptophan, bound tryptophan and tyrosine in plasma, and tryptophan, 5-hydroxytryptophan, serotonin, 5-hydroxyindoleacetic acid, tyrosine, dopamine and norepinephrine in brain parts of rat and pigeon Comparative Biochemistry and Physiology. B Comparative Biochemistry 53(4): 469-472
Callis, P.R.; Vivian, J.T. 2003: Understanding the variable fluorescence quantum yield of tryptophan in proteins using QM-MM simulations. Quenching by charge transfer to the peptide backbone Chemical Physics Letters 369(3-4): 409-414
Vekshin, N.; Vincent, M.; Gallay, J. 1993: Tyrosine hypochromism and absence of tyrosine-tryptophan energy transfer in phospholipase A2 and ribonuclease T1 Chemical Physics 171(1-2): 231-236
Bandiera, M.; Ricci, R. 1967: Production of tryptophan in strains of E. coli resistant to 5-methyl tryptophan and 5-fluoro tryptophan as a result of independant mutations Atti Ass Genet Ital 12: 475-485
Esfahani, M. 1981: Tryptophan fluorescence quenching and energy transfer in yeast plasma membrane Federation Proceedings 40(6): 1560
Vekshin, N.L.; Sukharev, V.I.; van, H.A.; G, A.J.W.. Visser 1999: Competition Between Energy Transfer and Deactivation During Quenching of Tryptophan Fluorescence of Albumin by Dye Molecules Journal of Fluorescence 9(2): 99-101
Shizuka, H.; Serizawa, M.; Shimo, T.; Saito, I.; Matsuura, T. 1988: Fluorescence quenching mechanism of tryptophan remarkably efficient internal proton induced quenching and charge transfer quenching Journal of the American Chemical Society 110(6): 1930-1934
Chiu, H.C.; Bersohn, R. 1977: Electronic energy transfer between tyrosine and tryptophan in the peptides Trp-(Pro)n-Tyr Biopolymers 16(2): 277-288
Fischer, C.J.; Schauerte, J.A.; Gafni, A.; Steel, D. 1999: Effects of site-directed mutations in E coli alkaline phosphatase on the activation energy for hydrogen exchange at the tryptophan 109 enamine studied by tryptophan phosphorescence Biophysical Journal 76(1 Part 2): A119
Ageeva, A.A.; Babenko, S.V.; Magin, I.M.; Plyusnin, V.F.; Kuznetsova, P.S.; Stepanov, A.A.; Vasilevsky, S.F.; Polyakov, N.E.; Doktorov, A.B.; Leshina, T.V. 2020: Stereoselectivity of Electron and Energy Transfer in the Quenching of (S/R)-Ketoprofen-(S)-Tryptophan Dyad Excited State International Journal of Molecular Sciences 21(15)
Moens, P.D.J.; Helms, M.K.; Jameson, D.M. 2004: Detection of tryptophan to tryptophan energy transfer in proteins Protein Journal 23(1): 79-83
Callis, P.R.; Vivian, J.T. 2002: Tryptophan fluorescence quantum yield in proteins correlates with local charge transfer to backbone excited state energy Biophysical Journal 82(1 Part 2): 428a-429a
L'vov K.M.; Byekmurzayev, B.M. 1991: Efficiency of inductive resonance energy transfer to tryptophan and tyrosine radicals Biophysics (English Translation of Biofizika) 36(2): 245-249
L'vov K.M.; Bekmurzaev, B.M. 1991: Efficiency of inductive resonance transfer of energy on tryptophan and tyrosine radicals Biofizika 36(2): 244-247
Borkman, R.F.; Phillips, S.R. 1985: Tyrosine-to-tryptophan energy transfer and the structure of calf gamma-Ii crystallin Experimental Eye Research 40(6): 819-826
Santus, R.; Bazin, M.; Aubailly, M.; Guermonprez, R. 1972: Influence of energy transfer on the photoionization of tryptophan and tyrosine in basic media Photochemistry and Photobiology 15(1): 61-69
Gingras, A.; Sarette, J.; Shawler, E.; Lee, T.; Freund, S.; Holwitt, E.; Hicks, B.W. 2013: Fluorescent proteins as biosensors by quenching resonance energy transfer from endogenous tryptophan: detection of nitroaromatic explosives Biosensors and Bioelectronics 48: 251-257