+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Epigallocatechin-3-gallate has dual, independent effects on the cardiac sarcoplasmic reticulum/endoplasmic reticulum Ca2+ ATPase



Epigallocatechin-3-gallate has dual, independent effects on the cardiac sarcoplasmic reticulum/endoplasmic reticulum Ca2+ ATPase



Journal of Muscle Research and Cell Motility 32(2): 89-98



We determined the effects of epigallocatechin-3-gallate (EGCG) and epicatechin (EC), on pump turnover and Ca2+ transport by the cardiac form of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA). Fluorescence spectroscopy was used to directly measure SERCA ATPase activity and to measure Ca2+ uptake into cardiac sarcoplasmic reticulum (SR) vesicles and microsomes derived from human embryonic kidney (HEK) cells expressing human cardiac SERCA2a. We found that EGCG reduces the maximum velocity of Ca2+ uptake into cardiac SR vesicles and increases the Ca2+-sensitivity of uptake in a concentration-dependent manner. EC is less potent than EGCG in increasing the Ca2+-sensitivity of uptake and does not affect maximum uptake velocity. The EGCG-dependent reduction in Ca2+ uptake velocity is well correlated with direct inhibition of SERCA. The effect of EGCG on the Ca2+-sensitivity of Ca2+ uptake into cardiac SR vesicles is affected by the phosphorylation status of phospholamban (PLB). When cardiac SERCA2a is expressed in HEK cells without PLB, EGCG reduces the maximum velocity of Ca2+ uptake but does not affect the Ca2+-sensitivity of uptake into microsomes derived from these cells indicating that the effect of EGCG on Ca2+-sensitivity requires the presence of PLB. Our results show that EGCG has dual effects on SERCA function in cardiac SR vesicles: it directly affects SERCA by reducing maximum uptake velocity; it increases the Ca2+-sensitivity of Ca2+ uptake in a manner that appears to depend on the interaction between SERCA and PLB.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 036172219

Download citation: RISBibTeXText

PMID: 21818690

DOI: 10.1007/s10974-011-9256-7


Related references

Effects of phytoestrogens on sarcoplasmic/endoplasmic reticulum calcium ATPase 2a and Ca2+ uptake into cardiac sarcoplasmic reticulum. Journal of Pharmacology and Experimental Therapeutics 316(2): 628-635, 2005

The endoplasmic reticulum-sarcoplasmic reticulum connection: distribution of endoplasmic reticulum markers in the sarcoplasmic reticulum of skeletal muscle fibers. Proceedings of the National Academy of Sciences of the United States of America 89(13): 6142-6146, 1992

Enhanced phosphorylation of phospholamban and downregulation of sarco/endoplasmic reticulum Ca2+ ATPase type 2 (SERCA 2) in cardiac sarcoplasmic reticulum from rabbits with heart failure. Cardiovascular Research 41(1): 135-146, 1999

Effects of sarcoplasmic reticulum calcium ATPase 2a overexpression on endoplasmic reticulum stress in cardiomyocytes. Zhonghua Yi Xue Za Zhi 89(6): 415-418, 2009

Enrichment of endoplasmic reticulum with cholesterol inhibits sarcoplasmic-endoplasmic reticulum calcium ATPase-2b activity in parallel with increased order of membrane lipids: implications for depletion of endoplasmic reticulum calcium stores and apoptosis in cholesterol-loaded macrophages. Journal of Biological Chemistry 279(35): 37030-9, 2004

Inhibition of the intracellular Ca(2+) transporter SERCA (Sarco-Endoplasmic Reticulum Ca(2+)-ATPase) by the natural polyphenol epigallocatechin-3-gallate. Journal of Bioenergetics and Biomembranes 44(5): 597-605, 2013

Excessive sarcoplasmic/endoplasmic reticulum Ca2+-ATPase expression causes increased sarcoplasmic reticulum Ca2+ uptake but decreases myocyte shortening. Circulation 110(23): 3553-3559, 2004

Alisol B, a novel inhibitor of the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase pump, induces autophagy, endoplasmic reticulum stress, and apoptosis. Molecular Cancer Therapeutics 9(3): 718-730, 2010

Sarcoplasmic reticulum Ca(2+) atpase (SERCA) 1a structurally substitutes for SERCA2a in the cardiac sarcoplasmic reticulum and increases cardiac Ca(2+) handling capacity. Circulation Research 89(2): 160-167, 2001

Sarcoplasmic reticulum of the flight muscles of locusta migratoria purification of sarcoplasmic reticulum vesicles and properties of sarcoplasmic reticulum atpase. Comparative Biochemistry and Physiology B 60(4): 481-486, 1978

The sarcoplasmic reticulum calcium atpase serca 1a contains endoplasmic reticulum targeting information. Biochemical & Biophysical Research Communications 186(1): 219-227, 1992

The sarcoplasmic reticulum Ca(2+)-ATPase, SERCA1a, contains endoplasmic reticulum targeting information. Biochemical and Biophysical Research Communications 186(1): 219-227, 1992

Endoplasmic reticulum of rat liver contains two proteins closely related to skeletal sarcoplasmic reticulum Ca-ATPase and calsequestrin. Journal of Biological Chemistry 263(1): 340-343, 1988

Calcium transport ATPase of canine cardiac sarcoplasmic reticulum. A comparison with that of rabbit fast skeletal muscle sarcoplasmic reticulum. Journal of Biological Chemistry 251(22): 6894-6900, 1976

The effect of pH on the transient-state kinetics of Ca2+-Mg2+-ATPase of cardiac sarcoplasmic reticulum. A comparison with skeletal sarcoplasmic reticulum. Circulation Research 50(2): 310-317, 1982