EurekaMag
+ Translate
+ Most Popular
Gaucher's disease;thirty-two years experience at Siriraj Hospital
A study of Macrobathra Meyrick from China (Lepidoptera, Cosmopterigidae)
First occurrence in ores of tetragonal chalcocite
Effects of trace element nutrition on sleep patterns in adult women
N.Z. range management guidelines. 2. Design of grazing management systems for tussock country
A case of lipoma of the esophagus
A revision of world Acanthosomatidae (Heteroptera: Pentatomidae): keys to and descriptions of subfamilies, tribes and genera, with designation of types
Life history of the coronate scyphozoan Linuche unguiculata (Swartz, 1788)
Perceptual restoration of obliterated sounds
Mutagenicity studies on two chromium(III) coordination compounds
The formation of the skeleton. I. Growth of a long bone. 1st appearance of a center of calcification
Leucopenia and abnormal liver function in travellers on malaria chemoprophylaxis
The joint commission: four key root causes loom large in sentinel event data
Treatment of vitiligo with topical 15% lactic acid solution in combination with ultra violet-A
Behaviour of dairy cows within three hours after feed supply: I. Influence of housing type and time elapsing after feed supply
Observations of the propagation velocity and formation mechanism of burst fractures caused by gunshot
Management and control of patients with type 2 diabetes mellitus in Lebanon: results from the International Diabetes Management Practices Study (IDMPS)
The diet composition and nutritional knowledge of patients with anorexia nervosa
Physoporella croatica Herak, 1958 of the Slovak karst Anisian (Slovakia, the West Carpathians Mts.)
Bright lights, big noise. How effective are vehicle warning systems?
Ein Plesiosaurier-Rest mit Magensteinen aus mittlerem Lias von Quedlinburg
Incidence of Chlamydia trachomatis in patients with sterility
Monster soup: the microscope and Victorian fantasy
Preliminary tests with residual sprays against poultry lice
Duration of the life of plants in phylogeny

Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata


Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata



Applied and Environmental Microbiology 78(11): 3816-3823



ISSN/ISBN: 0099-2240

PMID: 22447611

DOI: 10.1128/aem.00301-12

The entomopathogenic bacteria Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata suppress insect immune responses by inhibiting the catalytic activity of phospholipase A(2) (PLA(2)), which results in preventing biosynthesis of immune-mediating eicosanoids. This study identified PLA(2) inhibitors derived from culture broths of these two bacteria. Both X. nematophila and P. temperata subsp. temperata culture broths possessed significant PLA(2)-inhibitory activities. Fractionation of these bacterial metabolites in the culture broths using organic solvent and subsequent chromatography purified seven potent PLA(2) inhibitors, three of which (benzylideneacetone [BZA], proline-tyrosine [PY], and acetylated phenylalanine-glycine-valine [FGV]) were reported in a previous study. Four other compounds (indole, oxindole, cis-cyclo-PY, and p-hydroxyphenyl propionic acid) were identified and shown to significantly inhibit PLA(2). X. nematophila culture broth contained these seven compounds, while P. temperata subsp. temperata culture broth contained three compounds (BZA, acetylated FGV, and cis-cyclo-PY). BZA was detected in the largest amount among these PLA(2) compounds in both bacterial culture broths. All seven bacterial metabolites also showed significant inhibitory activities against immune responses, such as phenoloxidase activity and hemocytic nodulation; BZA was the most potent. Finally, this study characterized these seven compounds for their insecticidal activities against the diamondback moth, Plutella xylostella. Even though these compounds showed relatively low toxicities to larvae, they significantly enhanced the pathogenicity of Bacillus thuringiensis. This study reports bacterial-origin PLA(2) inhibitors, which would be applicable for developing novel insecticides.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 036395006

Download citation: RISBibTeXText

Related references

Differential pathogenicity of two entomopathogenic bacteria, Photorhabdus temperata subsp. temperata and Xenorhabdus nematophila against the red flour beetle, Tribolium castaneum. Journal of Asia-Pacific Entomology 13(3): 209-213, 2010

Development of “Bt-Plus” Biopesticide Using Entomopathogenic Bacterial (Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata) Metabolites. Korean Journal of Applied Entomology 50(3): 171-178, 2011

Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. International Journal of Systematic and Evolutionary Microbiology 60(Pt 8): 1921-1937, 2010

Synergistic Effect of Entomopathogenic Bacteria (Xenorhabdus sp and Photorhabdus temperata ssp temperata) on the pathogenicity of Bacillus thuringiensis ssp aizawai against Spodoptera exigua (Lepidoptera : Noctuidae). Environmental Entomology 35(6): 1584-1589, 2006

Identification of an entomopathogenic bacterium, Photorhabdus temperata subsp. temperata, in Korea. Journal of Asia Pacific Entomology 7(3): 331-337, 2004

Eicosanoid mediation of immune responses at early bacterial infection stage and its inhibition by Photorhabdus temperata subsp. temperata, an entomopathogenic bacterium. Archives of Insect Biochemistry and Physiology 99(4): E21502, 2018

Comparative Analysis of Immunosuppressive Metabolites Synthesized by an Entomopathogenic Bacterium, Photorhabdus temperata ssp. temperata, to Select Economic Bacterial Culture Media. Korean Journal of Applied Entomology 49(4): 409-416, 2010

Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov. International Journal of Systematic Bacteriology 49 Pt 4: 1645-1656, 1999

Differential immunosuppression by inhibiting PLA 2 affects virulence of Xenorhabdus hominickii and Photorhabdus temperata temperata. Journal of Invertebrate Pathology 157: 136-146, 2018

Structure of the O-polysaccharide of Photorhabdus temperata subsp. temperata XlNach(T) containing a novel branched monosaccharide, 3,6-dideoxy-4-C-[(S)-1,2-dihydroxyethyl]-d-xylo-hexose. Carbohydrate Research 403: 202-205, 2015

Complete genome sequence of Photorhabdus temperata subsp. thracensis 39-8 T, an entomopathogenic bacterium for the improved commercial bioinsecticide. Journal of Biotechnology 214: 115-116, 2015

Gibberellins synthesized by the entomopathogenic bacterium, Photorhabdus temperata M1021 as one of the factors of rice plant growth promotion. Journal of Plant Interactions 9(1): 775-782, 2014

Physiological and molecular characterization of a newly identified entomopathogenic bacteria, Photorhabdus temperata M1021. Journal of Microbiology and Biotechnology 22(12): 1605-1612, 2012

Identification and sequence of an unstable DNA element in the entomopathogenic bacteria Photorhabdus temperata strain K122. Letters in Applied Microbiology 35(2): 131-135, 2002

Overcoming the production limitations of Photorhabdus temperata ssp. temperata strain K122 bioinsecticides in low-cost medium. Bioprocess and Biosystems Engineering 34(8): 1039-1047, 2011