EurekaMag
+ Most Popular
Cunninghamia lanceolata plantations in China
Mammalian lairs in paleo ecological studies and palynology
Studies on technological possibilities in utilization of anhydrous milk fat for production of recombined butter-like products
Should right-sided fibroelastomas be operated upon?
Large esophageal lipoma
Apoptosis in the mammalian thymus during normal histogenesis and under various in vitro and in vivo experimental conditions
Poissons characoides nouveaux ou non signales de l'Ilha do Bananal, Bresil
Desensitizing efficacy of Colgate Sensitive Maximum Strength and Fresh Mint Sensodyne dentifrices
Administration of fluid by subcutaneous infusion: revival of a forgotten method
Tundra mosquito control - an impossible dream?
Schizophrenia for primary care providers: how to contribute to the care of a vulnerable patient population
Geochemical pattern analysis; method of describing the Southeastern limestone regional aquifer system
Incidence of low birth weights in a hospital of Mexico City
Tabanidae
Graded management intensity of grassland systems for enhancing floristic diversity
Microbiology and biochemistry of cheese and fermented milk
The ember tetra: a new pygmy characid tetra from the Rio das Mortes, Brazil, Hyphessobrycon amandae sp. n. (Pisces, Characoidei)
Risk factors of contrast-induced nephropathy in patients after coronary artery intervention
Renovation of onsite domestic wastewater in a poorly drained soil
Observations of the propagation velocity and formation mechanism of burst fractures caused by gunshot
Systolic blood pressure in a population of infants in the first year of life: the Brompton study
Haematological studies in rats fed with metanil yellow
Studies on pasteurellosis. I. A new species of Pasteurella encountered in chronic fowl cholera
Dormancy breaking and germination of Acacia salicina Lindl. seeds
therapy of lupus nephritis. a two-year prospective study

MgATP-concentration dependence of protection of yeast vacuolar V-ATPase from inactivation by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole supports a bi-site catalytic mechanism of ATP hydrolysis


MgATP-concentration dependence of protection of yeast vacuolar V-ATPase from inactivation by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole supports a bi-site catalytic mechanism of ATP hydrolysis



Biochemical and Biophysical Research Communications 423(2): 355-359



ISSN/ISBN: 0006-291X

PMID: 22659742

DOI: 10.1016/j.bbrc.2012.05.129

Catalytic site occupancy of the yeast vacuolar V-ATPase during ATP hydrolysis in the presence of an ATP-regenerating system was probed using sensitivity of the enzyme to inhibition by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). The results show that, regardless of the presence or absence of the proton-motive force across the vacuolar membrane, saturation of V-ATPase activity at increasing MgATP concentrations is accompanied by only partial protection of the enzyme from inhibition by NBD-Cl. Both in the presence and absence of an uncoupler, complete protection of V-ATPase from inhibition by NBD-Cl requires MgATP concentrations that are significantly higher than those expected from the K(m) values for MgATP. The results are inconsistent with a tri-site model and support a bi-site model for a mechanism of ATP hydrolysis by V-ATPase.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 036437761

Download citation: RISBibTeXText

Related references

Probes of inhibition ofEscherichia coliF1-ATPase by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole in the presence of MgADP and MgATP support a bi-site mechanism of ATP hydrolysis by the enzyme. Biochemistry 75(3): 327-335, 2010

Probes of inhibition of Escherichia coli F(1)-ATPase by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole in the presence of MgADP and MgATP support a bi-site mechanism of ATP hydrolysis by the enzyme. Biochemistry. Biokhimiia 75(3): 327-335, 2010

Characteristics of protection by MgADP and MgATP of α3β3γ subcomplex of thermophilic Bacillus PS3 βY341W-mutant F1-ATPase from inhibition by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole support a bi-site mechanism of catalysis. Biochemistry. Biokhimiia 76(11): 1253-1261, 2011

Characterization and function of catalytic subunit a of H+-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae: a study with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. The Journal of Biological Chemistry 263(1): 45-51, 1988

Characterization and function of catalytic subunit alpha of H+-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. A study with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Journal of Biological Chemistry 263(1): 45-51, 1988

Cyclic amp dependent protein kinase inactivation of the catalytic subunit and holo enzyme by 7 chloro 4 nitrobenzo 2 oxa 1 3 diazole. Federation Proceedings 39(6): ABSTRACT 2583, 1980

Probing the catalytic subunit of the tonoplast H+-ATPase from oat roots. Binding of 7-chloro-4-nitrobenzo-2-oxa-1,3,-diazole to the 72-kilodalton polypeptide. Journal of Biological Chemistry 262(15): 7135-7141, 1987

Reaction of (Na-K)ATPase with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole: evidence for an essential tyrosine at the active site. Biochemistry 17(3): 418-425, 1978

Quenching of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole-modified Na+/K+-ATPase reveals a higher accessibility of the low-affinity ATP-binding site. Febs Letters 419(2-3): 227-230, 1997

Quenching of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole-modified Na+/K+-ATPase reveals a higher accessibility of the low-affinity ATP-binding site. FEBS Letters 419(2-3): 227-230, 1997

Modification of the (Ca2+ + Mg2+)-ATPase protein of sarcoplasmic reticulum with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Biochimica et Biophysica Acta 995(2): 122-132, 1989

Selective and reversible inhibition of the ATPase of Micrococcus denitrificans by 7-chloro-4-nitrobenzo-2-oxa-1,3 diazole. Biochimica et Biophysica Acta 357(3): 457-461, 1974

Reaction of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole with the (Ca2+ + Mg2+)- ATPase protein of sarcoplasmic reticulum at low temperature. Biochimica et Biophysica Acta 1208(2): 197-203, 1994

Catalytic properties of beef heart mitochondrial ATPase modified with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Evidence for catalytic site cooperativity during ATP synthesis. Journal of Biological Chemistry 257(7): 3441-3446, 1982

Residues in P-glycoprotein catalytic sites that react with the inhibitor 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Archives of Biochemistry and Biophysics 357(1): 121-125, 1998