Section 37
Chapter 36,479

Anti-diabetic and anti-adipogenic effects of a novel selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor in the diet-induced obese mice

Park, J.S.; Rhee, S.D.; Jung, W.H.; Kang, N.S.; Kim, H.Y.; Kang, S.K.; Ahn, J.H.; Kim, K.Y.

European Journal of Pharmacology 691(1-3): 19-27


ISSN/ISBN: 1879-0712
PMID: 22760069
DOI: 10.1016/j.ejphar.2012.06.024
Accession: 036478195

Glucocorticoid excess (Cushing's syndrome) causes metabolic syndrome such as visceral obesity, insulin resistance, diabetes mellitus, dyslipidaemia and hypertension. The selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) have considerable potential for treating type 2 diabetes mellitus and metabolic syndrome. In the present study, we investigated the anti-diabetic and anti-adipogenic effects of 4-(2-(1,1-dioxido-6-(2,4,6-trichlorophenyl)-1,2,6-thiadiazinan-2-yl)acetamido)adamantane-1-carboxamide (KR-67183), a novel selective 11β-HSD1 inhibitor; we also investigated the underlying molecular mechanisms in the cortisone-induced 3T3-L1 adipogenesis model system and diet-induced obese (DIO) mice. KR-67183 concentration-dependently inhibited 11β-HSD1 activity in human and mouse 11β-HSD1 over-expressed cells and in the ex vivo assay of C57BL/6 mice. In the study with DIO mice, the administration of KR-67183 (20 and 50mg/kg/day, orally for 28 days) improved the glucose tolerance and insulin sensitivity with suppressed 11β-HSD1 activity in the liver and fat. However, KR-67183 showed no change in the adrenal gland weight/body weight ratio and plasma corticosterone concentration in DIO mice. Further, KR-67183 suppressed adipocyte differentiation on cortisone-induced adipogenesis in 3T3-L1 cells is associated with the suppression of the cortisone-induced mRNA levels of FABP4, PPARγ2 and GLUT4, and 11β-HSD1 activity. Taken together, it is suggested that a selective 11β-HSD1 inhibitor, KR-67183, may provide a new therapeutic window in the prevention and treatment without toxicity in type 2 diabetes with obesity.

PDF emailed within 0-6 h: $19.90