+ Site Statistics
References:
54,258,434
Abstracts:
29,560,870
PMIDs:
28,072,757
+ Search Articles
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ PDF Full Text
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Translate
+ Recently Requested

Silencing brassinosteroid receptor BRI1 impairs herbivory-elicited accumulation of jasmonic acid-isoleucine and diterpene glycosides, but not jasmonic acid and trypsin proteinase inhibitors in Nicotiana attenuata



Silencing brassinosteroid receptor BRI1 impairs herbivory-elicited accumulation of jasmonic acid-isoleucine and diterpene glycosides, but not jasmonic acid and trypsin proteinase inhibitors in Nicotiana attenuata



Journal of Integrative Plant Biology 55(6): 514-526



The brassinosteroid (BR) receptor, BR insensitive 1 (BRI1), plays a critical role in plant development, but whether BRI1-mediated BR signaling is involved in plant defense responses to herbivores was largely unknown. Here, we examined the function of BRI1 in the resistance of Nicotiana attenuata (Solanaceae) to its specialist insect herbivore Manduca sexta. Jasmonic acid (JA) and JA-isoleucine conjugate (JA-Ile) are important hormones that mediate resistance to herbivores and we found that after wounding or simulated herbivory NaBRI1 had little effect on JA levels, but was important for the induction of JA-Ile. Further experiments revealed that decreased JAR (the enzyme for JA-Ile production) activity and availability of Ile in NaBRI1-silenced plants were likely responsible for the low JA-Ile levels. Consistently, M. sexta larvae gained more weight on NaBRI1-silenced plants than on the control plants. Quantification of insect feeding-induced secondary metabolites revealed that silencing NaBRI1 resulted in decreased levels of carbon-rich defensive secondary metabolites (hydroxygeranyllinalool diterpene glycosides, chlorogenic acid, and rutin), but had little effect on the nitrogen-rich ones (nicotine and trypsin proteinase inhibitors). Thus, NaBRI1-mediated BR signaling is likely involved in plant defense responses to M. sexta, including maintaining JA-Ile levels and the accumulation of several carbon-rich defensive secondary metabolites.

(PDF emailed within 0-6 h: $19.90)

Accession: 036740388

Download citation: RISBibTeXText

PMID: 23347255

DOI: 10.1111/jipb.12035


Related references

BAK1 regulates the accumulation of jasmonic acid and the levels of trypsin proteinase inhibitors in Nicotiana attenuata's responses to herbivory. Journal of Experimental Botany 62(2): 641-652, 2011

Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against Manduca sexta. Plant Cell 18(11): 3303-3320, 2006

Silencing Threonine Deaminase and Jar4 in Nicotiana attenuata Impairs Jasmonic Acid-Isoleucine-Mediated Defenses against Manduca sexta. The Plant Cell 18(11): 3303-3320, 2006

Silencing NOA1 elevates herbivory-induced jasmonic acid accumulation and compromises most of the carbon-based defense metabolites in Nicotiana attenuata(F). Journal of Integrative Plant Biology 53(8): 619-631, 2012

Silencing Nicotiana attenuata calcium-dependent protein kinases, CDPK4 and CDPK5, strongly up-regulates wound- and herbivory-induced jasmonic acid accumulations. Plant Physiology 159(4): 1591-1607, 2012

Silencing Nicotiana attenuata Calcium-Dependent Protein Kinases, Cdpk4 and Cdpk5, Strongly Up-Regulates Wound- and Herbivory-Induced Jasmonic Acid Accumulations. Plant Physiology 159(4): 1591-1607, 2012

Comparisons of LIPOXYGENASE3- and JASMONATE-RESISTANT4/6-silenced plants reveal that jasmonic acid and jasmonic acid-amino acid conjugates play different roles in herbivore resistance of Nicotiana attenuata. Plant Physiology6: 3, 904-915, 2008

Comparisons of LIPOXYGENASE3- and JASMONATE-RESISTANT4/6-silenced plants reveal that jasmonic acid and jasmonic acid-amino acid conjugates play different roles in herbivore resistance of Nicotiana attenuata. Plant Physiology 146(3): 904-915, 2007

SGT1 regulates wounding- and herbivory-induced jasmonic acid accumulation and Nicotiana attenuata's resistance to the specialist lepidopteran herbivore Manduca sexta. New Phytologist 189(4): 1143-1156, 2011

RuBPCase activase (RCA) mediates growth-defense trade-offs: silencing RCA redirects jasmonic acid (JA) flux from JA-isoleucine to methyl jasmonate (MeJA) to attenuate induced defense responses in Nicotiana attenuata. New Phytologist 201(4): 1385-1395, 2014

Fatty acid-amino acid conjugates are essential for systemic activation of salicylic acid-induced protein kinase and accumulation of jasmonic acid in Nicotiana attenuata. Bmc Plant Biology 14: 326, 2015

Jasmonic Acid and Ethylene Modulate Local Responses to Wounding and Simulated Herbivory in Nicotiana attenuata Leaves. Plant Physiology 153(2): 785-798, 2010

Jasmonic acid and ethylene modulate local responses to wounding and simulated herbivory in Nicotiana attenuata leaves. Plant Physiology 153(2): 785-798, 2010

S-Nitrosoglutathione reductase (GSNOR) mediates the biosynthesis of jasmonic acid and ethylene induced by feeding of the insect herbivore Manduca sexta and is important for jasmonate-elicited responses in Nicotiana attenuata. Journal of Experimental Botany 62(13): 4605-4616, 2012

Kinetics of the accumulation of jasmonic acid and its derivatives in systemic leaves of tobacco (Nicotiana tabacum cv. Xanthi nc) and translocation of deuterium-labeled jasmonic acid from the wounding site to the systemic site. Bioscience, Biotechnology, and Biochemistry 73(9): 1962-1970, 2010