+ Site Statistics
References:
54,258,434
Abstracts:
29,560,870
PMIDs:
28,072,757
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Are calcium-dependent protein kinases involved in the regulation of glycolytic/gluconeogenetic enzymes? Studies with Ca2+/calmodulin-dependent protein kinase and protein kinase C



Are calcium-dependent protein kinases involved in the regulation of glycolytic/gluconeogenetic enzymes? Studies with Ca2+/calmodulin-dependent protein kinase and protein kinase C



European Journal of Biochemistry 167(2): 383-389



Changes in glycolytic flux have been observed in liver under conditions where effects of cAMP seem unlikely. We have, therefore, studied the phosphorylation of four enzymes involved in the regulation of glycolysis and gluconeogenesis (6-phosphofructo-1-kinase from rat liver and rabbit muscle; pyruvate kinase, 6-phosphofructo-2-kinase and fructose-1,6-bisphosphatase from rat liver) by defined concentrations of two cAMP-independent protein kinases: Ca2+/calmodulin-dependent protein kinase and Ca2+/phospholipid-dependent protein kinase (protein kinase C). The results were compared with those obtained with the catalytic subunit of cAMP-dependent protein kinase. The following results were obtained. 1. Ca2+/calmodulin-dependent protein kinase phosphorylates 6-phosphofructo-1-kinase and L-type pyruvate kinase at a slightly lower rate as compared to cAMP-dependent protein kinase. 2. 6-Phosphofructo-1-kinase is phosphorylated by the two kinases at a single identical position. There is no additive phosphorylation. The final stoichiometry is 2 mol phosphate/mol tetramer. The same holds for L-type pyruvate kinase except that the stoichiometry with either kinase or both kinases together is 4 mol phosphate/mol tetramer. 3. Rabbit muscle 6-phosphofructo-1-kinase is phosphorylated by cAMP-dependent protein kinase but not by Ca2+/calmodulin-dependent protein kinase. 4. Fructose-1,6-bisphosphatase from rat but not from rabbit liver is phosphorylated at the same position but at a markedly lower rate by Ca2+/calmodulin-dependent protein kinase when compared to the phosphorylation by cAMP-dependent protein kinase. 5. 6-Phosphofructo-2-kinase is phosphorylated by Ca2+/calmodulin-dependent protein kinase only at a negligible rate. 6. Protein kinase C does not seem to be involved in the regulation of the enzymes examined: only 6-phosphofructo-2-kinase became phosphorylated to a significant degree. In contrast to the phosphorylation by cAMP-dependent protein kinase, this phosphorylation is not associated with a change of enzyme activity. This agrees with our observation that the sites of phosphorylation by the two kinases are different. The results indicate that Ca2+/calmodulin-dependent protein kinase but not protein kinase C could be involved in the regulation of hepatic glycolytic flux under conditions where changes in the activity of cAMP-dependent protein kinase seem unlikely.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 039317528

Download citation: RISBibTeXText

PMID: 3040408

DOI: 10.1111/j.1432-1033.1987.tb13349.x


Related references

Are calcium dependent protein kinases involved in the regulation of glycolytic gluconeogenetic enzymes studies with calcium calmodulin dependent protein kinase and protein kinase c. European Journal of Biochemistry 167(2): 383-390, 1987

Site-specific phosphorylation of the purified receptor for calcium-channel blockers by cAMP- and cGMP-dependent protein kinases, protein kinase C, calmodulin-dependent protein kinase II and casein kinase II. European Journal of Biochemistry 178(2): 535-542, 1988

Phosphorylation of P1, a high mobility group-like protein, catalyzed by casein kinase II, protein kinase C, cyclic AMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase II. Febs Letters 258(1): 106-108, 1989

Conserved phosphorylation of the intracellular domains of GABA(A) receptor beta2 and beta3 subunits by cAMP-dependent protein kinase, cGMP-dependent protein kinase protein kinase C and Ca2+/calmodulin type II-dependent protein kinase. Neuropharmacology 36(10): 1377-1385, 1998

Regulation of mitogen-activated protein kinases by a calcium/calmodulin-dependent protein kinase cascade. Proceedings of the National Academy of Sciences of the United States of America 93(20): 10803-10808, 1996

Isolation and sequence analysis of a cDNA clone for a carrot calcium-dependent protein kinase: homology to calcium/calmodulin-dependent protein kinases and to calmodulin. Plant Molecular Biology 17(4): 581-590, 1991

Ethanol has no effect on camp dependent protein kinase protein kinase c or calcium calmodulin dependent protein kinase ii stimulated phosphorylation of highly purified substrates in vitro. Alcoholism Clinical & Experimental Research 15(6): 1040-1044, 1991

Prazosin-stimulated release of hepatic triacylglyceride lipase from primary cultured rat hepatocytes is involved in the regulation of cAMP-dependent protein kinase through activation of the Ca(2+)/calmodulin-dependent protein kinase-II. Pharmacological Reports 68(3): 649-653, 2017

Role of the protein kinases A and C and of the calcium/calmodulin-dependent protein kinase Ii in the regulation of the renal basolateral Pah and dicarboxylate transporters. Nephrology Dialysis Transplantation 14(Suppl 4): 10-11, 1999

Role of the protein kinases A and C and of the calcium/calmodulin-dependent protein kinase II in the regulation of the renal basolateral PAH and dicarboxylate transporters. Nephrology, Dialysis, Transplantation 14 Suppl 4: 10-11, 1999

Phosphorylation of connexin 32 a hepatocyte gap junction protein by cyclic amp dependent protein kinase protein kinase c and calcium ion calmodulin dependent protein kinase ii. European Journal of Biochemistry 192(2): 263-274, 1990

Human calcium-calmodulin dependent protein kinase I: cDna cloning, domain structure and activation by phosphorylation at threonine-177 by calcium-calmodulin dependent protein kinase I kinase. The Embo Journal 14(15): 3679-3686, 1995

Human calcium-calmodulin dependent protein kinase I: cDNA cloning, domain structure and activation by phosphorylation at threonine-177 by calcium-calmodulin dependent protein kinase I kinase. Embo Journal 14(15): 3679-3686, 1995

A calcium calmodulin dependent kinase rather than protein kinase c is involved in up regulation of the lhrh receptor. Biochemical & Biophysical Research Communications 183(2): 666-671, 1992

Ca2+/Calmodulin-Dependent Protein Kinase Kinases (CaMKKs) Effects on AMP-Activated Protein Kinase (AMPK) Regulation of Chicken Sperm Functions. Plos One 11(1): E0147559, 2016