+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Assembly of the sarcoplasmic reticulum. Localization by immunofluorescence of sarcoplasmic reticulum proteins in differentiating rat skeletal muscle cell cultures



Assembly of the sarcoplasmic reticulum. Localization by immunofluorescence of sarcoplasmic reticulum proteins in differentiating rat skeletal muscle cell cultures



Journal of Cell Biology 74(1): 287-298



Immunofluorescent staining techniques were used to study the distribution of the Ca(2) + Mg(2+)-dependent ATPase and calsequestrin in primary cultures of differentiating rat skeletal muscle cells, grown for different periods of time under various culture conditions. In mononucleated myoblasts calsequestrin was detected after 45 h in culture whereas the ATPase was not detected until 60 h. After cell fusion began, both proteins could be identified in all multinucleated cells. Myoblasts grown for longer than 60 h in low Ca(2+) medium contained calsequestrin and the ATPase, even though they were unable to fuse. These studies at the cellular level confirm biochemical findings on the biosynthesis of calsequestrin and the ATPase. Immunofluorescent staining of myoblasts showed that calsequestrin first appears in a well-defined region of the cell near one end of the nucleus. At later times, the staining occupied progressively larger regions adjacent to the nucleus and took on a fibrous appearance. This suggests that calsequestrin first accumulates in the Golgi region and then gradually spreads throughout the cell. In contrast, the ATPase appeared to be concentrated in many small patches or foci throughout the cytoplasm and was never confined to one particular region, although some parts of the cell often stained more intensely than others. In multinucleated cells, alternating dark and fluorescent strands parallel to the longitudinal axis of the cells were evident.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 039330731

Download citation: RISBibTeXText

PMID: 141456

DOI: 10.2307/1608160


Related references

Assembly of the sarcoplasmic reticulum proteins in differentiating rat skeletal muscle cell cultures: localization by immunofluorescence of sarcoplasmic reticulum proteins in differentiating rat skeletal muscle cell cultures. The Journal of Cell Biology 74(1): 287-298, 1977

Localization of sarcoplasmic reticulum proteins in rat skeletal muscle by immunofluorescence. Journal of Cell Biology 80(2): 372-384, 1979

Localization of sarcoplasmic reticulum atpase in differentiating skeletal muscle cultures by immuno fluorescence. Journal of Cell Biology 70(2 PT 2): 279A, 1976

Assembly of the sarcoplasmic reticulum. Biosynthesis of calsequestrin in rat skeletal muscle cell cultures. Journal of Biological Chemistry 251(24): 7733-7738, 1976

The endoplasmic reticulum-sarcoplasmic reticulum connection. II. Postnatal differentiation of the sarcoplasmic reticulum in skeletal muscle fibers. Experimental Cell Research 209(1): 140-148, 1993

The endoplasmic reticulum-sarcoplasmic reticulum connection: distribution of endoplasmic reticulum markers in the sarcoplasmic reticulum of skeletal muscle fibers. Proceedings of the National Academy of Sciences of the United States of America 89(13): 6142-6146, 1992

Assembly of the sarcoplasmic reticulum. Biosynthesis of the high affinity calcium binding protein in rat skeletal muscle cell cultures. Journal of Biological Chemistry 255(4): 1327-1334, 1980

Calcium transport by sarcoplasmic reticulum of skeletal muscle is inhibited by antibodies against the 53-kilodalton glycoprotein of the sarcoplasmic reticulum membrane. Biochemistry 28(11): 4830-4839, 1989

Calcium transport ATPase of canine cardiac sarcoplasmic reticulum. A comparison with that of rabbit fast skeletal muscle sarcoplasmic reticulum. Journal of Biological Chemistry 251(22): 6894-6900, 1976

Membrane asymmetry in isolated canine cardiac sarcoplasmic reticulum: Comparison with skeletal muscle sarcoplasmic reticulum. Journal of Membrane Biology 164(2): 169-175, 1998

Peroxide modification of skeletal muscle sarcoplasmic reticulum in antioxidant deficiency and under the action of ionol. I. Calcium transport into sarcoplasmic reticulum membranes. Ukrainskii Biokhimicheskii Zhurnal 63(4): 81-87, 1991

Peroxide modification of skeletal muscle sarcoplasmic reticulum in antioxidant deficiency and under the effect of ionol. II. Physico- chemical properties of the sarcoplasmic reticulum membrane. Ukrainskii Biokhimicheskii Zhurnal 63(4): 87-92, 1991

Mechanism of calcium release from sarcoplasmic reticulum effect of adenine nucleotide on magnesium binding to fragmented sarcoplasmic reticulum from bull frog skeletal muscle. Japanese Journal of Pharmacology 33(Suppl.): 166P, 1983

Changes in muscle function, sarcoplasmic reticulum calcium and expression of genes encoding sarcoplasmic reticulum proteins in human heart failure. Circulation 88(4 Part 2): I408, 1993

Assembly and dynamics of proteins of the longitudinal and junctional sarcoplasmic reticulum in skeletal muscle cells. Proceedings of the National Academy of Sciences of the United States of America 106(12): 4695-4700, 2009