Clostridium botulinum C3 ADP-ribosyltransferase gene. Cloning, sequencing, and expression of a functional protein in Escherichia coli

Nemoto, Y.; Namba, T.; Kozaki, S.; Narumiya, S.

Journal of Biological Chemistry 266(29): 19312-19319


ISSN/ISBN: 0021-9258
PMID: 1918048
Accession: 039592784

Download citation:  

Article/Abstract emailed within 1 workday
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

C3 ADP-ribosyltransferase is an exoenzyme produced by certain strains of Clostridium botulinum types C and D, which specifically ADP-ribosylates rho and rac proteins in eukaryotic cells. The enzyme was purified from a culture filtrate of C. botulinum type C strain 003-9, and the amino acid sequence from the amino-terminal Ser to Asn192 was determined by Edman degradation. Using a set of degenerate primers based on the sequence, we amplified a part of the gene for this enzyme by polymerase chain reaction. A 2.1-kilobase pair HincII fragment of C. botulinum DNA containing the whole structural gene was then identified by Southern analysis with the polymerase chain reaction product as a probe, and the complete nucleotide structure of the gene together with flanking regions was determined by cloning and DNA sequencing the HincII fragment. The gene encodes a protein of 244 amino acids with a Mr of 27,362 which begins with a putative signal peptide of 40 amino acids. Escherichia coli carrying this gene produced the active enzyme, and about 60% of it was found in the culture medium. Immunoblot analysis with antiserum against the enzyme revealed the presence of two immunoreactive proteins of 27 and 23 kDa in the cytoplasmic/membrane fraction and only the 23-kDa protein in the periplasm and the medium, suggesting that the enzyme expressed is processed in the E. coli, exported into the periplasm and released into the culture medium.