+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Effect of phenethyl isothiocyanate on the metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone by cultured rat lung tissue



Effect of phenethyl isothiocyanate on the metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone by cultured rat lung tissue



Carcinogenesis 12(6): 1029-1034



The effect of phenethyl isothiocyanate (PEITC), a dietary inhibitor of carcinogenesis, on the metabolism of the tobacco specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) by cultured rat peripheral lung tissues was investigated. Initially, the metabolism of NNK by the tissues was studied by incubating the lung explants in medium containing 1 and 10 microM [5-3H]NNK for 3, 6, 12, and 24 h. NNK metabolites were analyzed and quantified by HPLC and expressed as nmol/mg DNA. NNK was metabolized by three pathways; alpha-carbon hydroxylation, pyridine N-oxidation and carbonyl reduction. The principal metabolic pathway involved the conversion of NNK to the pyridine N-oxidized metabolites: 4-(methylnitrosamino)-1-(3-pyridyl-N-oxide)-1-butanone (NNK-N-oxide) and 4-(methylnitrosamino)-1-(3-pyridyl-N-oxide)-1-butanol (NNAL-N-oxide). When combined, NNK-N-oxide and NNAL-N-oxide constituted approximately 70% of the total metabolites in the medium at 24 h. To determine the effects of PEITC on the metabolism of NNK, lung explants were either treated with both 10 microM [5-3H]NNK and PEITC (10, 50, and 100 microM) for 24 h, or they were pre-treated with these same concentrations of PEITC for 16 h and then co-treated with both PEITC and 10 microM [5-3H]NNK for 24 h. In both treatment series, PEITC inhibited the alpha-carbon hydroxylation and pyridine N-oxidation of NNK and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which is produced from NNK by carbonyl reduction. In general, the inhibition of NNK metabolism was greater when the explants were pre-treated with PEITC. These results suggest that PEITC is an effective inhibitor of the conversion of NNK to metabolites that elicit DNA damage. Our results are in agreement with previously published data in which PEITC was shown to inhibit NNK metabolism and tumorigenesis in the rat lung.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 039934881

Download citation: RISBibTeXText

PMID: 2044181

DOI: 10.1093/carcin/12.6.1029


Related references

Stereoselective metabolism and tissue retention in rats of the individual enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), metabolites of the tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Carcinogenesis 25(7): 1237-1242, 2004

Inhibition of the carcinogenicity of 4 methylnitrosamino 1 3 pyridyl 1 butanone nnk in cultured rat and human lung tissue by dietary phenethyl isothiocyanate. FASEB Journal 4(4): A1137, 1990

Genetic variability in the metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). International Journal of Cancer 130(6): 1338-1346, 2012

Effects of phenethyl isothiocyanate on the metabolism of 4 methylnitrosamino 1 3 pyridyl 1 butanone nnk in the mouse lung. Proceedings of the American Association for Cancer Research Annual Meeting 31: 112, 1990

Inhibition of tobacco-specific nitrosamine 4-(methyl-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumors and DNA methylation in F344 rats and A/J mice by phenethyl isothiocyanate. Basic Life Sciences 52: 345-350, 1990

Effects of long term dietary phenethyl isothiocyanate on the microsomal metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and 4- (methylnitrosamino)-1-(3-pyridyl)-1-butanol in F344 rats. Carcinogenesis 18(9): 1715-1722, 1997

Effects of long term dietary phenethyl isothiocyanate on the microsomal metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in F344 rats. Carcinogenesis 18(9): 1715-1722, 1997

Metabolism of 4 methylnitrosamino 1 3 pyridyl 1 butanone nnk by rat lung and nasal mucosa microsomes and its inhibition by phenethyl isothiocyanate. Proceedings of the American Association for Cancer Research Annual Meeting 32: 118, 1991

Effects of aromatic isothiocyanates on tumorigenicity, O6-methylguanine formation, and metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in A/J mouse lung. Cancer Research 49(11): 2894-2897, 1989

Effects of benzyl isothiocyanate and 2-phenethyl isothiocyanate on benzo[a]pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone metabolism in F-344 rats. Carcinogenesis 24(3): 517-525, 2003

Effect of nicotine, cotinine and phenethyl isothiocyanate on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism in the Syrian golden hamster. Toxicology 179(1-2): 95-103, 2002

Effects of benzyl isothiocyanate and phenethyl isothiocyanate on DNA adduct formation by a mixture of benzo[a]pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in A/J mouse lung. Carcinogenesis 23(9): 1433-1439, 2002

Effects of phenethyl isothiocyanate and benzyl isothiocyanate, individually and in combination, on lung tumorigenesis induced in A/J mice by benzo[a]pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Letters 150(1): 49-56, 2000

Modulation of the mutagenicity and metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) by phenolic compounds. Mutation Research 368(3-4): 221-233, 1996

K-ras mutations in lung tumors from A/J and A/J x TSG-p53 F1 mice treated with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and phenethyl isothiocyanate. Carcinogenesis 16(10): 2487-2492, 1995