Flash photolysis-electron spin resonance studies of photosystem I. a fast reduction of component of P-700+

Warden, J.T.

Biochimica et Biophysica Acta 440(1): 89-97

1976


ISSN/ISBN: 0006-3002
PMID: 181092
DOI: 10.1016/0005-2728(76)90115-8
Accession: 040151840

Download citation:  
Text
  |  
BibTeX
  |  
RIS

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Abstract
A 300 mus decay component of ESR Signal I (P-700+) in chloroplasts is observed following a 10 mus actinic xenon flash. This transient is inhibited by treatments which block electron transfer from Photosystem II to Photosystem I (e.g. 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), KCN and HgCl2). The fast transient reduction of P-700+ can be restored in the case of DCMU or DBMIB inhibition by addition of an electron donor couple (2,6-dichlorophenol indophenol (Cl2Ind)/ascorbate) which supplies electrons to cytochrome f. However, this donor couple is inefficient in restoring electron transport in chloroplasts which have been inhibited with the plastocyanin inactivators, KCN and HgCl2. Oxidation-reduction measurements reveal that the fast P-700+ reduction component reflects electron transfer from a component with Em = 375 +/- 10 mV (pH = 7.5). These data suggest the assignment of the 300-mus decay kinetics to electron transfer from cytochrome f (Fe2+) to P-700+, thus confirming the recent observations of Haehnel et al. (Z. Naturforsch. 26b, 1171-1174 (1971)).