Interactions between phospholipase C-coupled and N-methyl-D-aspartate receptors in cultured cerebellar granule cells: protein kinase C mediated inhibition of N-methyl-D-aspartate responses
Courtney, M.J.; Nicholls, D.G.
Journal of Neurochemistry 59(3): 983-992
1992
ISSN/ISBN: 0022-3042 PMID: 1386623 DOI: 10.1111/j.1471-4159.1992.tb08339.x
Accession: 040468838
The N-methyl-D-aspartate (NMDA) receptor of rat cerebellar granule cells in primary culture is inhibited by phospholipase C-coupled receptor activation. In the absence of ionotropic agonist, cells modulate their cytoplasmic free Ca2+, [Ca2+]c, in response to stimulation of M3 muscarinic receptors, metabotropic glutamate receptors, and endothelin receptors by the respective agonists carbachol, trans-1-amino-1,3-cyclopentanedicarboxylic acid, and endothelin-1. The response is consistent with the ability of phospholipase C-coupled receptors to release a pool of intracellular Ca2+ and induce a subsequent Ca2+ entry into the cell; both of these responses can be abolished by discharge of internal Ca2+ stores with low concentrations of ionomycin or thapsigargin. In the case of cells stimulated with NMDA, the [Ca2+]c response to the phospholipase C-coupled agonists is complex and agonist dependent; however, in the presence of ionomycin each agonist produces a partial inhibition of the NMDA component of the [Ca2+]c signal. This inhibition can be mimicked by the protein kinase C activator 4 beta-phorbol 12,13-dibutyrate. It is concluded that NMDA receptors on cerebellar granule cells are inhibited by phospholipase C-coupled muscarinic M3, glutamatergic, and endothelin receptors via activation of protein kinase C.
