Multiple forms of beta-ketoacyl-acyl carrier protein synthetase in Escherichia coli

D'Agnolo, G.; Rosenfeld, I.S.; Vagelos, P.R.

Journal of Biological Chemistry 250(14): 5289-5294


ISSN/ISBN: 0021-9258
PMID: 237914
Accession: 040751144

Download citation:  

Article/Abstract emailed within 1 workday
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Two forms of beta-ketoacyl-acyl carrier protein (ACP) synthetase (designated I and II) have been identified in extracts of Escherichia coli. Synthetase I corresponds to the condensing enzyme that was studied earlier (GREENSPAN, M.D., ALBERTS, A.W., and VAGELOS, P.R. (1969) J. Biol. Chem. 244, 6477-6485); synthetase II represents a new form of the enzyme. Synthetase II was isolated as a homogeneous protein. It differs from synthetase I in having a higher molecular weight (76,999 versus 66,000), a lower pH optimum (5.5 to 6.1 versus 7.2), and a greater resistance to denaturation by heat. Synthetase II is similar to synthetase I in that both are inactivated by iodoacetamide, and prior incubation of the enzymes with fatty acyl thioesters prevents the inhibitory effect of iodoacetamide. Both also react with a fatty acyl thioester to form an acyl-enzyme intermediate, and the latter reacts with malonyl-ACP to form a beta-ketoacyl thioester. Specificity studies indicated that synthetase II, like synthetase I, has similar affinities with saturated and cis unsaturated fatty acyl thioesters of ACP that are intermediates in the synthesis of saturated and unsaturated fatty acids, respectively. The two synthetases differ only with respect to reactivity with palmitoleyl thioesters: synthetase II has a lower Km and higher Vmax than synthetase I with palmitoleyl-ACP. This finding suggests that synthetase II functions specifically in the elongation of palmitoleyl-ACP to form cis-vaccenyl-ACP. An investigation of synthetases I and II in two classes of unsaturated fatty acid auxotrophs revealed that synthetase I is absent in one class, fabB. Addition of wild type synthetase I to fabB fatty acid synthetase, which synthesizes only saturated fatty acids, permitted this fatty acid synthetase to synthesize unsaturated fatty acids. These experiments indicate that synthetase I plays a critical role in the synthesis of unsaturated fatty acids.