Home
  >  
Section 41
  >  
Chapter 40,899

Oxygen-independent intracellular and oxygen-dependent extracellular killing of Escherichia coli S15 by human polymorphonuclear leukocytes

Weiss, J.; Kao, L.; Victor, M.; Elsbach, P.

Journal of Clinical Investigation 76(1): 206-212

1985


ISSN/ISBN: 0021-9738
PMID: 3894419
DOI: 10.1172/jci111947
Accession: 040898056

Effective killing of bacteria by polymorphonuclear leukocytes (PMN) is generally assumed to require intracellular sequestration and, depending on the bacterial species, can be both O2-dependent or O2-independent. Killing of several strains of Salmonella typhimurium and Escherichia coli by rabbit PMN does not require O2 and is apparently due to a granule-associated bactericidal/permeability-increasing protein (BPI) present in rabbit and human PMN. In this study we examined the O2 dependence of the killing of E. coli (S15) by human PMN. Ingested and noningested E. coli were separated by centrifugation after incubation with PMN in room air or under N2. In the presence of heat-treated serum approximately 50% of E. coli (10 bacteria/PMN) were taken up by PMN and rapidly (5-15 min) killed both in room air and under N2. The remaining extracellular bacteria (approximately 50%) were killed during 30-60 min of incubation in room air but not under N2. When uptake of E. coli by PMN was increased to approximately 80% by the use of C6-depleted serum (retaining heat-labile opsonins), bacterial survival under N2 was reduced from 54 +/- 7.6% to 13 +/- 5.5%. PMN from a patient with chronic granulomatous disease killed PMN-associated but not extracellular E. coli. BPI was detected, by indirect immunofluorescence, on the surface of PMN-associated E. coli within 5 min of incubation of E. coli with PMN both in room air and under N2. In contrast, at no time was BPI detected on the surface of extracellular E. coli, indicating that the non-PMN-associated E. coli had not been previously ingested. Thus, killing of ingested E. coli S15 by human as well as rabbit PMN does not require O2 and appears to be BPI-mediated. However, when ingestion is limited, extracellular bacteria can also be killed but principally by O2-dependent mechanisms.

PDF emailed within 0-6 h: $19.90