+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Peroxide modification of skeletal muscle sarcoplasmic reticulum in antioxidant deficiency and under the action of ionol. I. Calcium transport into sarcoplasmic reticulum membranes



Peroxide modification of skeletal muscle sarcoplasmic reticulum in antioxidant deficiency and under the action of ionol. I. Calcium transport into sarcoplasmic reticulum membranes



Ukrainskii Biokhimicheskii Zhurnal 63(4): 81-87



It is shown that in case of antioxidant insufficiency (AOI) activation of NADPH- and ascorbate-dependent lipid peroxidation (LPO) in sarcoplasmic reticulum (SR) of skeletal muscles proceeds 1.7 and 4.1 times faster, respectively. Activation of lipid peroxidation in AOI leads to damage of Ca2+ transport processes in SR of skeletal muscles. Under these conditions ATP-dependent accumulation of 45Ca (by 88%) and Ca(2+)-ATPase (by 14%) activity in SR of skeletal muscles falls. In case of AOI a significant disturbance of passive Ca2+ transport in SR of skeletal muscles takes place, being characterized by an increased passive 45Ca output from vesicles due to breakage of the biomembrane permeability as a result of lipid peroxidation of membranes. Treatment of animals with ionol, a synthetic antioxidant, causes a decrease of activated NADPH- and ascorbate-dependent LPO in SR of skeletal muscles and stabilization of Ca2+ transport processes.

Please choose payment method:






(PDF emailed within 1 workday: $29.90)

Accession: 040949099

Download citation: RISBibTeXText

PMID: 1659010


Related references

Peroxide modification of skeletal muscle sarcoplasmic reticulum in antioxidant deficiency and under the effect of ionol. II. Physico- chemical properties of the sarcoplasmic reticulum membrane. Ukrainskii Biokhimicheskii Zhurnal 63(4): 87-92, 1991

Calcium transport by sarcoplasmic reticulum of skeletal muscle is inhibited by antibodies against the 53-kilodalton glycoprotein of the sarcoplasmic reticulum membrane. Biochemistry 28(11): 4830-4839, 1989

Calcium transport ATPase of canine cardiac sarcoplasmic reticulum. A comparison with that of rabbit fast skeletal muscle sarcoplasmic reticulum. Journal of Biological Chemistry 251(22): 6894-6900, 1976

Chemical modification of the calcium ion dependent atpase ec 3.6.1.3 of sarcoplasmic reticulum from skeletal muscle part 1 binding of n ethyl maleimide to sarcoplasmic reticulum evidence for sulfhydryl groups in the active site of atpase and for conformational changes induced by adp and atp. Journal of Biochemistry 79(3): 649-654, 1976

Dependence of the calcium induced release from the sarcoplasmic reticulum of skinned skeletal muscle fibers from the frog semitendinosus on the rate of change of free calcium concentration at the outer surface of the sarcoplasmic reticulum. Journal of Physiology (Cambridge) 353: 56P, 1984

Mechanism of calcium release from sarcoplasmic reticulum effect of adenine nucleotide on magnesium binding to fragmented sarcoplasmic reticulum from bull frog skeletal muscle. Japanese Journal of Pharmacology 33(Suppl.): 166P, 1983

Depression of sarcoplasmic reticulum calcium release due to sarcoplasmic reticulum calcium depletion in frog skeletal muscle. Biophysical Journal 49(2 Part 2): 459A, 1986

Modification by fitc of the calcium atpase and calcium transport reactions in skeletal muscle sarcoplasmic reticulum. Molecular & Cellular Biochemistry 82(1-2): 148-149, 1988

The endoplasmic reticulum-sarcoplasmic reticulum connection. II. Postnatal differentiation of the sarcoplasmic reticulum in skeletal muscle fibers. Experimental Cell Research 209(1): 140-148, 1993

Chemical Modification of the Ca2+-dependent Atpase of Sarcoplasmic Reticulum from Skeletal Muscle. I. Binding of N-Ethylmaleimide to Sarcoplasmic Reticulum: Evidence for Sulfhydryl Groups in the Active Site of Atpase and for Conformational Changes Induced by Adenosine Tri- and Diphosphate1. The Journal of Biochemistry 79(3): 649-654, 1976

Chemical modification of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Binding of N-ethylmaleimide to sarcoplasmic reticulum: evidence for sulfhydryl groups in the active site of ATPase and for conformational changes induced by adenosine tri- and diphosphate. Journal of Biochemistry 79(3): 649-654, 1976

Reaction mechanism of the calcium dependent atpase ec 3.6.1.3 of sarcoplasmic reticulum from skeletal muscle part 9 kinetic studies on the conversion of osmotic energy to chemical energy in the sarcoplasmic reticulum. Journal of Biochemistry 74(6): 1091-1096, 1973

The endoplasmic reticulum-sarcoplasmic reticulum connection: distribution of endoplasmic reticulum markers in the sarcoplasmic reticulum of skeletal muscle fibers. Proceedings of the National Academy of Sciences of the United States of America 89(13): 6142-6146, 1992

Assembly of the sarcoplasmic reticulum. Localization by immunofluorescence of sarcoplasmic reticulum proteins in differentiating rat skeletal muscle cell cultures. Journal of Cell Biology 74(1): 287-298, 1977

Membrane asymmetry in isolated canine cardiac sarcoplasmic reticulum: Comparison with skeletal muscle sarcoplasmic reticulum. Journal of Membrane Biology 164(2): 169-175, 1998