+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Peroxide modification of skeletal muscle sarcoplasmic reticulum in antioxidant deficiency and under the effect of ionol. II. Physico- chemical properties of the sarcoplasmic reticulum membrane



Peroxide modification of skeletal muscle sarcoplasmic reticulum in antioxidant deficiency and under the effect of ionol. II. Physico- chemical properties of the sarcoplasmic reticulum membrane



Ukrainskii Biokhimicheskii Zhurnal 63(4): 87-92



Physico-chemical parameters of membranes of skeletal muscles' sarcoplasmic reticulum in antioxidant insufficiency, which was modelled by excluding alpha-tocopherol from the animals ration, and after treatment with phenol antioxidant ionol were studied. It was shown that activation of lipid peroxidation in vitamin E insufficiency results in a significant lowering of microviscosity of lipid bilayer membranes of sarcoplasmic reticulum. Using polarography significant changes in membrane protein conformation were revealed, which were characterized by lowering of integrity and by disorganization of protein globules. Treatment of animals with antioxidant insufficiency with ionol led to certain normalization of changes of physico-chemical characteristics of the learned membrane structures caused by lipid peroxidation.

Please choose payment method:






(PDF emailed within 1 workday: $29.90)

Accession: 040949100

Download citation: RISBibTeXText

PMID: 1949234


Related references

Peroxide modification of skeletal muscle sarcoplasmic reticulum in antioxidant deficiency and under the action of ionol. I. Calcium transport into sarcoplasmic reticulum membranes. Ukrainskii Biokhimicheskii Zhurnal 63(4): 81-87, 1991

Chemical modification of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Binding of N-ethylmaleimide to sarcoplasmic reticulum: evidence for sulfhydryl groups in the active site of ATPase and for conformational changes induced by adenosine tri- and diphosphate. Journal of Biochemistry 79(3): 649-654, 1976

Chemical Modification of the Ca2+-dependent Atpase of Sarcoplasmic Reticulum from Skeletal Muscle. I. Binding of N-Ethylmaleimide to Sarcoplasmic Reticulum: Evidence for Sulfhydryl Groups in the Active Site of Atpase and for Conformational Changes Induced by Adenosine Tri- and Diphosphate1. The Journal of Biochemistry 79(3): 649-654, 1976

Chemical modification of the calcium ion dependent atpase ec 3.6.1.3 of sarcoplasmic reticulum from skeletal muscle part 1 binding of n ethyl maleimide to sarcoplasmic reticulum evidence for sulfhydryl groups in the active site of atpase and for conformational changes induced by adp and atp. Journal of Biochemistry 79(3): 649-654, 1976

Calcium transport by sarcoplasmic reticulum of skeletal muscle is inhibited by antibodies against the 53-kilodalton glycoprotein of the sarcoplasmic reticulum membrane. Biochemistry 28(11): 4830-4839, 1989

Membrane asymmetry in isolated canine cardiac sarcoplasmic reticulum: Comparison with skeletal muscle sarcoplasmic reticulum. Journal of Membrane Biology 164(2): 169-175, 1998

The endoplasmic reticulum-sarcoplasmic reticulum connection. II. Postnatal differentiation of the sarcoplasmic reticulum in skeletal muscle fibers. Experimental Cell Research 209(1): 140-148, 1993

Mechanism of calcium release from sarcoplasmic reticulum effect of adenine nucleotide on magnesium binding to fragmented sarcoplasmic reticulum from bull frog skeletal muscle. Japanese Journal of Pharmacology 33(Suppl.): 166P, 1983

Reaction mechanism of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. IX. Kinetic studies on the conversion of osmotic energy to chemical energy in the sarcoplasmic reticulum. Journal of Biochemistry 74(6): 1091-1096, 1973

Sarcoplasmic reticulum of the flight muscles of locusta migratoria purification of sarcoplasmic reticulum vesicles and properties of sarcoplasmic reticulum atpase. Comparative Biochemistry and Physiology B 60(4): 481-486, 1978

Reaction mechanism of the calcium dependent atpase ec 3.6.1.3 of sarcoplasmic reticulum from skeletal muscle part 9 kinetic studies on the conversion of osmotic energy to chemical energy in the sarcoplasmic reticulum. Journal of Biochemistry 74(6): 1091-1096, 1973

The endoplasmic reticulum-sarcoplasmic reticulum connection: distribution of endoplasmic reticulum markers in the sarcoplasmic reticulum of skeletal muscle fibers. Proceedings of the National Academy of Sciences of the United States of America 89(13): 6142-6146, 1992

Assembly of the sarcoplasmic reticulum. Localization by immunofluorescence of sarcoplasmic reticulum proteins in differentiating rat skeletal muscle cell cultures. Journal of Cell Biology 74(1): 287-298, 1977

Calcium transport ATPase of canine cardiac sarcoplasmic reticulum. A comparison with that of rabbit fast skeletal muscle sarcoplasmic reticulum. Journal of Biological Chemistry 251(22): 6894-6900, 1976

Reaction mechanism of the calcium ion dependent atpase ec 3.6.1.3 of sarcoplasmic reticulum from skeletal muscle part 8 molecular mechanism of the conversion of osmotic energy to chemical energy in the sarcoplasmic reticulum. Journal of Biochemistry 72(6): 1537-1548, 1972