Three adenine nucleotide binding sites in F1-F0 mitochondrial ATPase as revealed by presteady-state and steady-state kinetics of ATP hydrolysis. Evidence for two inhibitory ADP-specific noncatalytic sites
Bulygin, V.V.; Vinogradov, A.D.
Febs Letters 236(2): 497-500
1988
ISSN/ISBN: 0014-5793 PMID: 2900778 DOI: 10.1016/0014-5793(88)80085-1
Accession: 041801182
Preincubation of submitochondrial particles with ADP in the presence of Mg2+ results in the complete inhibition of ATPase which is slowly reactivated in the assay mixture containing ATP and the ATP regenerating system. Significantly, the rate of activation increases as the concentration of ADP in the preincubation mixture rises from 1 microM to 20 microM and reaches a constant value at higher ADP concentrations. The first-order rate constant for the activation process in the assay mixture is ATP-dependent at any level of inhibitory ADP. The data obtained strongly suggest that two ADP-specific inhibitory sites and one ATP-specific hydrolytic site are present in F1-F0 ATPase. Taking into account the (3 alpha.3 beta).gamma.delta.epsilon structure of F1, it is concluded that the synchronous discharge of ADP from two inhibitory sites during the activation occurs after ATP binds to the ATPase catalytic site.