+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

14-3-3 protein directly interacts with the kinase domain of calcium/calmodulin-dependent protein kinase kinase (CaMKK2)



14-3-3 protein directly interacts with the kinase domain of calcium/calmodulin-dependent protein kinase kinase (CaMKK2)



Biochimica et Biophysica Acta. General Subjects 1862(7): 1612-1625



Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a member of the Ca2+/calmodulin-dependent kinase (CaMK) family involved in adiposity regulation, glucose homeostasis and cancer. This upstream activator of CaMKI, CaMKIV and AMP-activated protein kinase is inhibited by phosphorylation, which also triggers an association with the scaffolding protein 14-3-3. However, the role of 14-3-3 in the regulation of CaMKK2 remains unknown. The interaction between phosphorylated CaMKK2 and the 14-3-3γ protein, as well as the architecture of their complex, were studied using enzyme activity measurements, small-angle x-ray scattering (SAXS), time-resolved fluorescence spectroscopy and protein crystallography. Our data suggest that the 14-3-3 protein binding does not inhibit the catalytic activity of phosphorylated CaMKK2 but rather slows down its dephosphorylation. Structural analysis indicated that the complex is flexible and that CaMKK2 is located outside the phosphopeptide-binding central channel of the 14-3-3γ dimer. Furthermore, 14-3-3γ appears to interact with and affect the structure of several regions of CaMKK2 outside the 14-3-3 binding motifs. In addition, the structural basis of interactions between 14-3-3 and the 14-3-3 binding motifs of CaMKK2 were elucidated by determining the crystal structures of phosphopeptides containing these motifs bound to 14-3-3. 14-3-3γ protein directly interacts with the kinase domain of CaMKK2 and the region containing the inhibitory phosphorylation site Thr145 within the N-terminal extension. Our results suggested that CaMKK isoforms differ in their 14-3-3-mediated regulations and that the interaction between 14-3-3 protein and the N-terminal 14-3-3-binding motif of CaMKK2 might be stabilized by small-molecule compounds.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 042379157

Download citation: RISBibTeXText

PMID: 29649512

DOI: 10.1016/j.bbagen.2018.04.006


Related references

Human calcium-calmodulin dependent protein kinase I: cDNA cloning, domain structure and activation by phosphorylation at threonine-177 by calcium-calmodulin dependent protein kinase I kinase. Embo Journal 14(15): 3679-3686, 1995

Human calcium-calmodulin dependent protein kinase I: cDna cloning, domain structure and activation by phosphorylation at threonine-177 by calcium-calmodulin dependent protein kinase I kinase. The Embo Journal 14(15): 3679-3686, 1995

1,2,6-Thiadiazinones as Novel Narrow Spectrum Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 (CaMKK2) Inhibitors. Molecules 23(5):, 2018

Research Resource: Roles for Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 (CaMKK2) in Systems Metabolism. Molecular Endocrinology 30(5): 557-572, 2016

Phosphorylation of P1, a high mobility group-like protein, catalyzed by casein kinase II, protein kinase C, cyclic AMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase II. Febs Letters 258(1): 106-108, 1989

Phosphorylated mitogen-activated protein kinase (MAPK/ERK-P), protein kinase of 38 kDa (p38-P), stress-activated protein kinase (SAPK/JNK-P), and calcium/calmodulin-dependent kinase II (CaM kinase II) are differentially expressed in tau deposits in neurons and glial cells in tauopathies. Journal of Neural Transmission 108(12): 1397-1415, 2001

The Ca2+/calmodulin-dependent protein kinase kinase, CaMKK2, inhibits preadipocyte differentiation. Endocrinology 152(10): 3668-3679, 2011

Akt activation by Ca 2+ /calmodulin-dependent protein kinase kinase 2 (CaMKK2) in ovarian cancer cells. Journal of Biological Chemistry 292(34): 14188-14204, 2017

Conserved phosphorylation of the intracellular domains of GABA(A) receptor beta2 and beta3 subunits by cAMP-dependent protein kinase, cGMP-dependent protein kinase protein kinase C and Ca2+/calmodulin type II-dependent protein kinase. Neuropharmacology 36(10): 1377-1385, 1997

Site-specific phosphorylation of the purified receptor for calcium-channel blockers by cAMP- and cGMP-dependent protein kinases, protein kinase C, calmodulin-dependent protein kinase II and casein kinase II. European Journal of Biochemistry 178(2): 535-542, 1988

Ethanol has no effect on camp dependent protein kinase protein kinase c or calcium calmodulin dependent protein kinase ii stimulated phosphorylation of highly purified substrates in vitro. Alcoholism Clinical and Experimental Research 15(6): 1040-1044, 1991

Emodin alleviates hepatic steatosis by inhibiting sterol regulatory element binding protein 1 activity by way of the calcium/calmodulin-dependent kinase kinase-AMP-activated protein kinase-mechanistic target of rapamycin-p70 ribosomal S6 kinase signaling pathway. Hepatology Research 47(7): 683-701, 2017

Nitric oxide synthase regulatory sites phosphorylation by cyclic amp dependent protein kinase protein kinase c and calcium calmodulin protein kinase identification of flavin and calmodulin binding sites. Journal of Biological Chemistry 267(16): 10976-10981, 1992

A regulatory feedback loop between Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) and the androgen receptor in prostate cancer progression. Journal of Biological Chemistry 287(29): 24832-24843, 2012

Phosphorylation of connexin 32 a hepatocyte gap junction protein by cyclic amp dependent protein kinase protein kinase c and calcium ion calmodulin dependent protein kinase ii. European Journal of Biochemistry 192(2): 263-274, 1990