Cell-mediated lympholysis responses against autologous cells modified with haptenic sulfhydryl reagents. IV. Self-determinants recognized by wild-type anti-H-2Kb and H-2Db-restricted cytotoxic T cells specific for sulfhydryl and amino-reactive haptens are absent in certain H-2 mutant strains
Levy, R.B.; Shearer, G.M.
Journal of Immunology 129(4): 1525-1529
1982
ISSN/ISBN: 0022-1767 PMID: 6180015 Accession: 042476289
Virus-specific H-2-restricted cytotoxic T cells (CTL) have been found to discriminate between wild-type and mutant class I molecules. The only results reported concerning a hapten-self model, however, indicate that TNP-specific CTL do not discriminate between wild-type and mutant self determinants (7). In the present study, hapten-specific CTL generated against N-iodoacetyl-N'-(5-sulfonic-1-naphthyl) ethylene diamine-modified syngeneic cells (AED-self) were used to determine whether a hapten that is known to react with different cell surface sites than TNP can induce CTL that distinguish mutant H-2K and D molecules from those of wild type. The findings of this study indicate that H-2Kb-AED-self cytotoxic effector cells can discriminate between self-determinants of H-2Kb wild-type and the H-2bm1 and H-2bm11 mutants, but not between wild-type and the H-2bm6 and H-2bm9 mutants. H-2Db-AED-self effector cells were also found to discriminate between self-determinants of H-2Db wild-type and the H-2bm13 and H-2bm14 mutants. Furthermore, cold target competition experiments indicated that the bm1 and bm11 Kb products also lack some determinants recognized by anti-wild-type Kb TNP-specific CTL. These findings provide the first demonstration that hapten-self-specific effectors can detect alterations in H-2 mutant class I molecules. The results in the present report also support the hypothesis that haptens do not have to derivatize H-2 molecules in order to form antigens recognized by H-2-restricted CTL. These findings are discussed with respect to the involvement of self-determinants on MHC and non-MHC cell surface molecules.