+ Site Statistics
+ Search Articles
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ PDF Full Text
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Translate
+ Recently Requested

Functional, histological, biochemical renal modifications. Comparative study of dibekacin, gentamicin, tobramycin, netilmicin and amikacin

Functional, histological, biochemical renal modifications. Comparative study of dibekacin, gentamicin, tobramycin, netilmicin and amikacin

La Nouvelle Presse Medicale 11(46): 3419-3425

In this study, we evaluate the nephrotoxic potential of dibekacin (D) compared to gentamicin (G), tobramycin (T), amikacin (A) and netilmicin (N). The mean features of aminoglycoside nephrotoxicity are: a lysosomal membrane fragilization, a lysosomal phospholipidosis characterized by a decrease activity of sphingomyelinase, an increase lysosomal volume with both an increase of individual size and an increase number of lysosomes, a cell necrosis and renal failure. We have quantified these parameters biochemically and morphometrically. We can classify, considering doses and durations, the aminoglycosides as gentamicin greater than or equal to netilmicin greater than dibekacin = tobramycin greater than amikacin for decreasing nephrotoxic incidence.

(PDF emailed within 1 workday: $29.90)

Accession: 043165883

Download citation: RISBibTeXText

PMID: 7155850

Related references

Renal disposition of gentamicin, dibekacin, tobramycin, netilmicin, and amikacin in humans. Antimicrobial Agents and ChemoTherapy 27(4): 520-524, 1985

Evaluation of dibekacin vs. gentamicin netilmicin tobramycin amikacin and neomycin toxic potential a biochemical and morphometric approach. Drugs under Experimental and Clinical Research 10(8-9): 537-542, 1984

Comparative ototoxicity of ribostamycin, dactimicin, dibekacin, kanamycin, amikacin, tobramycin, gentamicin, sisomicin and netilmicin in the inner ear of guinea pigs. ChemoTherapy 36(2): 155-168, 1990

Low dose and high dose nephro toxicity of dibekacin compared with that of gentamicin tobramycin amikacin and netilmicin. Drugs under Experimental & Clinical Research 9(10): 735-748, 1983

Comparative in vitro studies with netilmicin amikacin gentamicin sisomicin and tobramycin. Journal of Antimicrobial Chemotherapy 5(1): 73-80, 1979

Comparative oto toxicity of amikacin gentamicin netilmicin and tobramycin in guinea pigs. Toxicology & Applied Pharmacology 65(2): 222-230, 1982

Comparative activity of netilmicin, gentamicin, amikacin, and tobramycin against Pseudomonas aeruginosa and Enterobacteriaceae. Antimicrobial Agents and ChemoTherapy 10(4): 592-597, 1976

Comparative distribution of gentamicin, tobramycin, sisomicin, netilmicin, and amikacin in interstitial fluid in rabbits. Antimicrobial Agents and ChemoTherapy 13(3): 368-372, 1978

The comparative ototoxicities of gentamicin, tobramycin and dibekacin in the guinea pig. A functional and morphological cochlear and vestibular study. Acta Oto-Laryngologica. Supplementum 390: 1-30, 1982

Comparative in vitro activity of netilmicin, amikacin, tobramycin and sisomicin against gentamicin highly-resistant enterobacteriaceae. ChemoTherapy 26(6): 409-417, 1980

Gentamicin, netilmicin, dibekacin, and amikacin nephrotoxicity and its relationship to tubular reabsorption in rabbits. Antimicrobial Agents and ChemoTherapy 25(2): 168-172, 1984

Comparison of in vitro activity of Sch 21420, a gentamicin B derivative, with those of amikacin, gentamicin, netilmicin, sisomicin, and tobramycin. Antimicrobial Agents and ChemoTherapy 18(2): 338-345, 1980

Interaction of gentamicin, dibekacin, netilmicin and amikacin with various penicillins, cephalosporins, minocycline and new fluoro-quinolones against Enterobacteriaceae and Pseudomonas aeruginosa. Journal of Antimicrobial ChemoTherapy 16(5): 581-587, 1985

In vitro studies with netilmicin compared with amikacin, gentamicin, and tobramycin. Antimicrobial Agents and ChemoTherapy 11(1): 64-73, 1977