Section 44
Chapter 43,464

Investigation of the primary photochemistry of bacteriorhodopsin by low-temperature Fourier-transform infrared spectroscopy

Siebert, F.; Mäntele, W.

European Journal of Biochemistry 130(3): 565-573


ISSN/ISBN: 0014-2956
PMID: 6825710
DOI: 10.1111/j.1432-1033.1983.tb07187.x
Accession: 043463621

Download citation:  

The method of Fourier-transform infrared difference spectroscopy was applied to investigate the transition at 77K of bacteriorhodopsin in its light-adapted form to K6(10), the first intermediate which is stable at low temperature. In addition to unmodified bacteriorhodopsin, bacteriorhodopsin in 2H2O and bacteriorhodopsin containing [15-2H]retinal was used. The results show that major rearrangements occur in the Schiff base in this transition. It is not possible to identify a C = N stretching vibration of the Schiff base in K6(10). The identification of an N-H bending vibration in K6(10) shows that the nitrogen of the previous Schiff base still has a proton attached. The fingerprint region exhibits very unusual features for K6(10) and bears no similarity to protonated retinylidene Schiff base model compounds of any isomeric composition. Therefore, no conclusions on the isomeric state of the retinal in K6(10) can be drawn. The spectra show that the terminal part of the retinal is predominantly reflected in the difference spectra. This indicates that the most polar part of the retinal is located near the Schiff base. We have evidence for protein molecular changes occurring in this transition at 77K.

PDF emailed within 0-6 h: $19.90