+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

PH dependence of stability of the wild-type tryptophan synthase alpha-subunit and two mutant proteins (Glu49 replaced by Met or Gln)



PH dependence of stability of the wild-type tryptophan synthase alpha-subunit and two mutant proteins (Glu49 replaced by Met or Gln)



Journal of Molecular Biology 144(4): 455-465




Please choose payment method:






(PDF emailed within 1 workday: $29.90)

Accession: 044999259

Download citation: RISBibTeXText

PMID: 7019448


Related references

Ph dependence of stability of the wild type tryptophan synthase alpha subunit and 2 mutant proteins glutamic acid 49 methionine or glutamine. Journal of Molecular Biology 144(4): 455-466, 1980

Comparison of denaturation by guanidine hydro chloride of the wild type tryptophan synthase ec 4.2.1.20 alpha subunit of escherichia coli and 2 mutant proteins glutamic acid 49 replaced by methionine or glutamine. Journal of Biochemistry 85(4): 915-922, 1979

Comparison of denaturation by guanidine hydrochloride of the wild type tryptophan synthase alpha-subunit of Escherichia coli and two mutant protein (Glu 49 replaced by Met or Gln). Journal of Biochemistry 85(4): 915-921, 1979

Effect of amino acid residues on conformational stability in eight mutant proteins variously substituted at a unique position of the tryptophan synthase alpha-subunit. Journal of Biological Chemistry 259(22): 14076-14081, 1984

Dependence of conformational stability on hydrophobicity of the amino acid residue in a series of variant proteins substituted at a unique position of tryptophan synthase alpha subunit. Proceedings of the National Academy of Sciences of the United States of America 84(13): 4441-4444, 1987

Substrate interactions with the alpha-subunit of the Escherichia coli tryptophan synthase. A kinetic study of the wild-type alpha-subunit. Archives of Biochemistry and Biophysics 181(2): 419-427, 1977

Folding of mutant tryptophan synthase alpha subunit proteins. Federation Proceedings 45(6): 1919, 1986

The dependence of conformational stability on the hydrophobicity of the amino acid residue in a series of variant proteins substituted by each of the 20 amino acids at a unique position of the tryptophan synthase alpha subunit. Protein Engineering 1(3): 249, 1987

Calorimetric study of tryptophan synthase alpha-subunit and two mutant proteins. International Journal of Peptide and Protein Research 20(4): 331-336, 1982

Calorimetric study of tryptophan synthase alpha subunit and 2 mutant proteins. International Journal of Peptide & Protein Research 20(4): 331-336, 1982

Evidence that glutamic acid 49 of tryptophan synthase alpha subunit is a catalytic residue. Inactive mutant proteins substituted at position 49 bind ligands and transmit ligand-dependent to the beta subunit. Journal of Biological Chemistry 263(18): 8611-8614, 1988

Effect of amino acid residues on conformational stability in eight mutant proteins variously substituted at a unique position of the tryptophan synthase a-subunit. The Journal of Biological Chemistry 259: 076-81, 1984

Conformational changes in the alpha-subunit coupled to binding of the beta 2-subunit of tryptophan synthase from Escherichia coli: crystal structure of the tryptophan synthase alpha-subunit alone. Biochemistry 44(4): 1184-1192, 2005

Crystallization and X-ray crystallographic studies of wild-type and mutant tryptophan synthase alpha-subunits from Escherichia coli. Molecules and Cells 19(2): 219-222, 2005

Correlation of surface properties with conformational stabilities of wild-type and six mutant tryptophan synthase alpha-subunits substituted at the same position. Protein Engineering 2(2): 153-156, 1988