+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

99mTc-EDDA/HYNIC-TOC: a new 99mTc-labelled radiopharmaceutical for imaging somatostatin receptor-positive tumours; first clinical results and intra-patient comparison with 111In-labelled octreotide derivatives



99mTc-EDDA/HYNIC-TOC: a new 99mTc-labelled radiopharmaceutical for imaging somatostatin receptor-positive tumours; first clinical results and intra-patient comparison with 111In-labelled octreotide derivatives



European Journal of Nuclear Medicine 27(9): 1318-1325



[111In-diethylene triamine penta-acetic acid-D-Phe1]-octreotide (DTPA-octreotide) scintigraphy has gained widespread acceptance as a diagnostic clinical procedure in oncology for imaging somatostatin receptor-positive tumours. However, indium-111 as a radiolabel has several drawbacks, including limited availability, suboptimal gamma energy and high radiation burden to the patient. We have recently reported on the preclinical development of 99mTc-EDDA/HYNIC-TOC, a new octreotide derivative which showed promising results both in vitro and in vivo. We now report our initial clinical experiences with this new radiopharmaceutical in ten oncological patients. The clinical diagnoses were: carcinoid syndrome (n=5), thyroid cancer (n=3), pancreatic cancer (n=1) and pituitary tumour (n=1). The biodistribution and kinetics of 99mTc-EDDA/HYNIC-TOC were compared with those of 111In-DTPA-octreotide in six cases, and with those of 111In-DOTA-TOC in five cases. With the new tracer tumours were imaged within 15 min after injection and showed the highest target/non-target ratios 4 h after injection. Tumour uptake persisted up to 20 h p.i. The rate of blood clearance was similar to that of 111In-DTPA-octreotide but faster than that of 111In-DOTA-TOC, while urinary excretion was lower compared with the 111In derivatives. Semi-quantitative region of interest analysis showed that 99mTc-EDDA/HYNIC-TOC produced higher tumour/organ (target/non-target) ratios than the 111In derivatives, especially in relation to heart and muscle. Significantly more lesions could be detected in 99mTc images. We conclude that 99mTcEDDA/HYNIC-TOC shows better imaging properties for the identification of somatostatin receptor-positive tumour sites than currently available 111In-labelled octreotide derivatives.

Please choose payment method:






(PDF emailed within 1 workday: $29.90)

Accession: 045025388

Download citation: RISBibTeXText

PMID: 11007513


Related references

Detection of somatostatin receptor-positive tumours using the new 99mTc-tricine-HYNIC-D-Phe1-Tyr3-octreotide: first results in patients and comparison with 111In-DTPA-D-Phe1-octreotide. European Journal of Nuclear Medicine 27(6): 628-637, 2000

99mTc-HYNIC-[Tyr3]-octreotide for imaging somatostatin-receptor-positive tumors: preclinical evaluation and comparison with 111In-octreotide. Journal of Nuclear Medicine 41(6): 1114-1119, 2000

An intrapatient comparison of 99mTc-EDDA/HYNIC-TOC with 111In-DTPA-octreotide for diagnosis of somatostatin receptor-expressing tumors. Journal of Nuclear Medicine 44(5): 708-716, 2003

99mTc-N4- octreotate versus 99mTc-EDDA/HYNIC- octreotide An intrapatient comparison of two novel technetium-99m labeled tracers for somatostatin receptor scintigraphy. Cancer Biotherapy & Radiopharmaceuticals 19(1): 73-79, 2004

99mTc-N4-[Tyr3]Octreotate Versus 99mTc-EDDA/HYNIC-[Tyr3]Octreotide: an intrapatient comparison of two novel Technetium-99m labeled tracers for somatostatin receptor scintigraphy. Cancer BioTherapy and Radiopharmaceuticals 19(1): 73-79, 2004

99mTc-EDDA-HYNIC-Tyr3-octreotide for detection of somatostatin receptor positive tumors and first experience in patients. Journal of Nuclear Medicine 41(5 Suppl ): 149P-150P, 2000

A freeze-dried kit formulation for the preparation of Lys(27)(99mTc-EDDA/HYNIC)-Exendin(9-39)/99mTc-EDDA/HYNIC-Tyr3-Octreotide to detect benign and malignant insulinomas. Nuclear Medicine and Biology 42(12): 911-916, 2015

Preparation via coligand exchange and characterization of (99mTc-EDDA-HYNIC-D-Phe1,Tyr3)Octreotide (99mTc-EDDA/HYNIC-TOC). Journal of Labelled Compounds and Radiopharmaceuticals 46(4): 307-318, 2003

Radiopharmaceutical development of a freeze-dried kit formulation for the preparation of [99mTc-EDDA-HYNIC-D-Phe1, Tyr3]-octreotide, a somatostatin analog for tumor diagnosis. Journal of Pharmaceutical Sciences 93(10): 2497-2506, 2004

Specificity and sensitivity of ⁹⁹mTc-EDDA/HYNIC-Tyr³-octreotide (⁹⁹mTc-TOC) for imaging neuroendocrine tumors. Nuclear Medicine Communications 33(1): 69-79, 2012

Preparation and evaluation of 99mTc-EDDA/HYNIC-[Lys 3]-bombesin for imaging gastrin-releasing peptide receptor-positive tumours. Nuclear Medicine Communications 27(4): 371-376, 2006

The Diagnostic Efficiency of 99mTc-EDDA/HYNIC-Octreotate SPECT-CT in Comparison with 111In-Pentetrotide in the Detection of Neuroendocrine Tumours. Molecular Imaging and Radionuclide Therapy 22(3): 76-84, 2013

99mTc-labelled HYNIC-minigastrin with reduced kidney uptake for targeting of CCK-2 receptor-positive tumours. European Journal of Nuclear Medicine and Molecular Imaging 34(8): 1209-1218, 2007

Evaluation of [99mTc/EDDA/HYNIC0]octreotide derivatives compared with [111In-DOTA0,Tyr3, Thr8]octreotide and [111In-DTPA0]octreotide: does tumor or pancreas uptake correlate with the rate of internalization?. Journal of Nuclear Medicine 46(9): 1561-1569, 2005

Analysis of accumulation of 99mTc-octreotide and 99mTc-EDDA/HYNIC-Tyr3-octreotide in the rat kidneys. Nuclear Medicine and Biology 31(2): 231-239, 2004