+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Biokinetics and dosimetry in patients administered with (111)In-DOTA-Tyr(3)-octreotide: implications for internal radiotherapy with (90)Y-DOTATOC

Biokinetics and dosimetry in patients administered with (111)In-DOTA-Tyr(3)-octreotide: implications for internal radiotherapy with (90)Y-DOTATOC

European Journal of Nuclear Medicine 26(8): 877-886

Recent advances in receptor-mediated tumour imaging have resulted in the development of a new somatostatin analogue, DOTA-dPhe(1)-Tyr(3)-octreotide. This new compound, named DOTATOC, has shown high affinity for somatostatin receptors, ease of labelling and stability with yttrium-90 and favourable biodistribution in animal models. The aim of this work was to evaluate the biodistribution and dosimetry of DOTATOC radiolabelled with indium-111, in anticipation of therapy trials with (90)Y-DOTATOC in patients. Eighteen patients were injected with DOTATOC (10 microg), labelled with 150-185 MBq of (111)In. Blood and urine samples were collected throughout the duration of the study (0-2 days). Planar and single-photon emission tomography images were acquired at 0.5, 3-4, 24 and 48 h and time-activity curves were obtained for organs and tumours. A compartmental model was used to determine the kinetic parameters for each organ. Dose calculations were performed according to the MIRD formalism. Specific activities of >37 GBq/ micromol were routinely achieved. Patients showed no acute or delayed adverse reactions. The residence time for (111)In-DOTATOC in blood was 0.9+/-0.4 h. The injected activity excreted in the urine in the first 24 h was 73%+/-11%. The agent localized primarily in spleen, kidneys and liver. The residence times in source organs were: 2.2+/-1.8 h in spleen, 1.7+/-1.2 h in kidneys, 2.4+/-1.9 h in liver, 1.5+/-0.3 h in urinary bladder and 9. 4+/-5.5 h in the remainder of the body; the mean residence time in tumour was 0.47 h (range: 0.03-6.50 h). Based on our findings, the predicted absorbed doses for (90)Y-DOTATOC would be 7.6+/-6.3 (spleen), 3.3+/-2.2 (kidneys), 0.7+/-0.6 (liver), 2.2+/-0.3 (bladder), 0.03+/-0.01 (red marrow) and 10.1 (range: 1.4-31.0) (tumour) mGy/MBq. These results indicate that high activities of (90)Y-DOTATOC can be administered with low risk of myelotoxicity, although with potentially high radiation doses to the spleen and kidneys. Tumour doses were high enough in most cases to make it likely that the desired therapeutic response desired would be obtained.

Please choose payment method:

(PDF emailed within 1 workday: $29.90)

Accession: 045376725

Download citation: RISBibTeXText

PMID: 10436201

Related references

Biokinetics and dosimetry in patients administered with111In-DOTA-Tyr3-octreotide: implications for internal radiotherapy with90Y-DOTATOC. European Journal of Nuclear Medicine and Molecular Imaging 26(8): 877-886, 1999

(177)Lu-DOTA](0)-D-Phe(1)-Tyr(3)-Octreotide ((177)Lu-DOTATOC) For Peptide Receptor Radiotherapy in Patients with Advanced Neuroendocrine Tumours: A Phase-II Study. Theranostics 6(4): 501-510, 2016

Biokinetics and dosimetry of 111In-DOTA-NOC-ATE compared with 111In-DTPA-octreotide. European Journal of Nuclear Medicine and Molecular Imaging 39(12): 1868-1875, 2012

Bone marrow dose results in peptide receptor radionuclide therapy with 90Y-DOTA-Tyr3-Octreotide, 111In-DTPA-Octreotide and 177Lu-DOTA-Octreotate Importance of dosimetry model. Journal of Nuclear Medicine 43(5 Suppl.): 90P, 2002

Organ and tumor dosimetry of 177Lu-DOTA-Tyr3-octreotate and 90Y-DOTA-Tyr3-octreotide A preliminary study in 2 patients. Journal of Nuclear Medicine 43(5 Suppl.): 316P, 2002

Comparison of 111In-DOTA-DPhe1-Tyr3-octreotide and 111In-DOTA-lanreotide scintigraphy and dosimetry in patients with neuroendocrine tumours. European Journal of Nuclear Medicine and Molecular Imaging 33(5): 532-540, 2006

177 Lu-DOTA-HYNIC-Lys(Nal)-Urea-Glu: Biokinetics, Dosimetry, and Evaluation in Patients with Advanced Prostate Cancer. Contrast Media and Molecular Imaging 2018: 5247153, 2018

Receptor radionuclide therapy with 90Y-[DOTA]0-Tyr3-octreotide (90Y-DOTATOC) in neuroendocrine tumours. European Journal of Nuclear Medicine and Molecular Imaging 31(7): 1038-1046, 2004

Biokinetics and dosimetry in patients of 99mTc-EDDA/HYNIC-Tyr3-octreotide prepared from lyophilized kits. Applied Radiation and Isotopes 64(7): 792-797, 2006

68Ga-DOTA-D Phe1-Tyr3-Octreotide (DOTATOC)-PET/CT in a Suspected Case of Recurrent Meningioma. Indian Journal of Nuclear Medicine 32(2): 164, 2017

(68) Ga- DOTA(0) -Tyr(3) octreotide (DOTATOC) positron emission tomography (PET)/CT in five cases of ectopic adrenocorticotropin-secreting tumours. Clinical Endocrinology 81(1): 152-153, 2014

Biodistribution and dosimetry of indium-111 labeled DOTA-Tyr3-octreotide in patients with neuroendocrine tumors. Journal of Nuclear Medicine 39(5 Suppl. ): 221P, 1998

Exceptional results in neuroendocrine-metastases-caused paraplegia treated with [90Y-DOTA]-D-Phe1-Tyr3-octreotide (90Y-DOTATOC), a radiolabelled somatostatin analogue. Clinical Oncology ) 12(2): 121-123, 2000

Pre-therapeutic dosimetry and biodistribution of 86Y-DOTA-Phe1-Tyr3-octreotide versus 111In-pentetreotide in patients with advanced neuroendocrine tumours. European Journal of Nuclear Medicine and Molecular Imaging 31(10): 1386-1392, 2004

131I]-TYR3-octreotide: clinical dosimetry and use for internal radiotherapy of metastatic paraganglioma and carcinoid tumors. Nuclear Medicine and Biology 27(8): 809-813, 2000