+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Spectroscopic studies of the tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon Thermococcus litoralis



Spectroscopic studies of the tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon Thermococcus litoralis



Journal of Biological Inorganic Chemistry 5(3): 313-327



The electronic and redox properties of the iron-sulfur cluster and tungsten center in the as-isolated and sulfide-activated forms of formaldehyde ferredoxin oxidoreductase (FOR) from Thermococcus litoralis (Tl) have been investigated by using the combination of EPR and variable-temperature magnetic circular dichroism (VTMCD) spectroscopies. The results reveal a [Fe4S4]2+,+ cluster (Em=-368mV) that undergoes redox cycling between an oxidized form with an S=0 ground state and a reduced form that exists as a pH- and medium-dependent mixture of S=3/2 (g=5.4; E/D=0.33) and S=1/2 (g=2.03, 1.93, 1.86) ground states, with the former dominating in the presence of 50% (v/v) glycerol. Three distinct types of W(V) EPR signals have been observed during dye-mediated redox titration of as-isolated Tl FOR. The initial resonance observed upon oxidation, termed the "low-potential" W(V) species (g=1.977, 1.898, 1.843), corresponds to approximately 25-30% of the total W and undergoes redox cycling between W(IV)/ W(V) and W(V)/W(VI) states at physiologically relevant potentials (Em= -335 and -280 mV, respectively). At higher potentials a minor "mid-potential" W(V) species, g= 1.983, 1.956, 1.932, accounting for less than 5 % of the total W, appears with a midpoint potential of -34 mV and persists up to at least + 300 mV. At potentials above 0 mV, a major "high-potential" W(V) signal, g= 1.981, 1.956, 1.883, accounting for 30-40% of the total W, appears at a midpoint potential of +184 mV. As-isolated samples of Tl FOR were found to undergo an approximately 8-fold enhancement in activity on incubation with excess Na2S under reducing conditions and the sulfide-activated Tl FOR was partially inactivated by cyanide. The spectroscopic and redox properties of the sulfide-activated Tl FOR are quite distinct from those of the as-isolated enzyme, with loss of the low-potential species and changes in both the mid-potential W(V) species (g= 1.981, 1.950, 1.931; Em = -265 mV) and high-potential W(V) species (g=1.981, 1.952, 1.895; Em = +65 mV). Taken together, the W(V) species in sulfide-activated samples of Tl FOR maximally account for only 15% of the total W. Both types of high-potential W(V) species were lost upon incubation with cyanide and the sulfide-activated high-potential species is converted into the as-isolated high-potential species upon exposure to air. Structural models are proposed for each of the observed W(V) species and both types of mid-potential and high-potential species are proposed to be artifacts of ligand-based oxidation of W(VI) species. A W(VI) species with terminal sulfido or thiol ligands is proposed to be responsible for the catalytic activity in sulfide-activated samples of Tl FOR.

Please choose payment method:






(PDF emailed within 1 workday: $29.90)

Accession: 047412848

Download citation: RISBibTeXText

PMID: 10907742


Related references

Characterization of a novel tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon, Thermococcus litoralis. A role for tungsten in peptide catabolism. Journal of Biological Chemistry 268(18): 13592-13600, 1993

Molecular characterization of the genes encoding the tungsten-containing aldehyde ferredoxin oxidoreductase from Pyrococcus furiosus and formaldehyde ferredoxin oxidoreductase from Thermococcus litoralis. Journal of Bacteriology 177(16): 4817-4819, 1995

Spectroscopic studies of tungsten-containing formaldehyde ferredoxin oxidoreductase and glyceraldehyde-3-phosphate ferredoxin oxidoreductase from two hyperthermophilic archaea. Journal of Inorganic Biochemistry 74(1-4): 112, 1999

Characterization of a fourth type of 2-keto acid-oxidizing enzyme from a hyperthermophilic archaeon: 2-ketoglutarate ferredoxin oxidoreductase from Thermococcus litoralis. Journal of Bacteriology 178(20): 5890-5896, 1996

Purification, characterization, and metabolic function of tungsten-containing aldehyde ferredoxin oxidoreductase from the hyperthermophilic and proteolytic archaeon Thermococcus strain ES-1. Journal of Bacteriology 177(16): 4757-4764, 1995

Purification and molecular characterization of the tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus: the third of a putative five-member tungstoenzyme family. Journal of Bacteriology 181(4): 1171-1180, 1999

1H NMR investigation of the electronic structure of the four-iron ferredoxin from the hyperthermophilic archaeon Thermococcus litoralis. Journal of the American Chemical Society 116(15): 6841-6849, 1994

A novel NADPH-dependent oxidoreductase with a unique domain structure in the hyperthermophilic Archaeon, Thermococcus litoralis. Fems Microbiology Letters 282(1): 8, 2008

Molecular model of the solution structure for the paramagnetic four-iron ferredoxin from the hyperthermophilic archaeon Thermococcus litoralis. Biochemistry 35(35): 11319-11328, 1996

1H NMR investigation of the secondary structure, tertiary contacts and cluster environment of the four-iron ferredoxin from the hyperthermophilic archaeon Thermococcus litoralis. Journal Of Biomolecular Nmr. 7(1): 35-47, 1996

Indolepyruvate ferredoxin oxidoreductase: An oxygen-sensitive iron-sulfur enzyme from the hyperthermophilic archaeon Thermococcus profundus. Journal of Bioscience and Bioengineering 114(1): 23-27, 2012

Glyceraldehyde-3-phosphate ferredoxin oxidoreductase A novel tungsten-containing enzyme in the hyperthermophilic archaeon, Pyrococcus furiosus. Abstracts of the General Meeting of the American Society for Microbiology 95: 557, 1995

Crystallization and preliminary X-ray diffraction studies of pyrrolidone carboxyl peptidase from the hyperthermophilic archaeon Thermococcus litoralis. Acta Crystallographica Section D Biological Crystallography 55(3): 702-703, 1999