+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Stabilities and conformations of Alzheimer's beta -amyloid peptide oligomers (Abeta 16-22, Abeta 16-35, and Abeta 10-35): Sequence effects

Stabilities and conformations of Alzheimer's beta -amyloid peptide oligomers (Abeta 16-22, Abeta 16-35, and Abeta 10-35): Sequence effects

Proceedings of the National Academy of Sciences of the United States of America 99(22): 14126-14131

Previously, we have studied the minimal oligomer size of an aggregate amyloid seed and the mechanism of seed growth with a multilayer beta-sheet model. Under high temperature simulation conditions, our approach can test the stability of possible amyloid forms. Here, we report our study of oligomers of Alzheimer's amyloid beta-peptide (Abeta) fragments 16-22, 16-35, and 10-35 (abbreviated Abeta(16-22), Abeta(16-35), and Abeta(10-35), respectively). Our simulations indicate that an antiparallel beta-sheet orientation is the most stable for the Abeta(16-22), in agreement with a solid state NMR-based model [Balbach, J. J., Ishii, Y., Antzutkin, O. N., Leapman, R. D., Rizzo, N. W., et al. (2000) Biochemistry 39, 13748-13759]. A model with twenty-four Abeta(16-22) strands indicates a highly twisted fibril. Whereas the short Abeta(16-22) and Abeta(24-36) may exist in fully extended form, the linear parallel beta-sheets for Abeta(16-35) appear impossible, mainly because of the polar region in the middle of the 16-35 sequence. However, a bent double-layered hairpin-like structure (called hook) with the polar region at the turn forms parallel beta-sheets with higher stability. An intra-strand salt-bridge (D23-K28) stabilizes the bent hairpin-like hook structure. The bent double-beta-sheet model for the Abeta(10-35) similarly offers oligomer stability.

Please choose payment method:

(PDF emailed within 0-6 h: $19.90)

Accession: 047425068

Download citation: RISBibTeXText

PMID: 12391326

DOI: 10.1073/pnas.212206899

Related references

Inhibition of amyloid-beta (Abeta) peptide-binding alcohol dehydrogenase-Abeta interaction reduces Abeta accumulation and improves mitochondrial function in a mouse model of Alzheimer's disease. Journal of Neuroscience 31(6): 2313-2320, 2011

Amphoterin includes a sequence motif which is homologous to the Alzheimer's beta-amyloid peptide (Abeta), forms amyloid fibrils in vitro, and binds avidly to Abeta. Biochemistry 40(34): 10032-7, 2001

Autoantibodies to amyloid beta-peptide (Abeta) are increased in Alzheimer's disease patients and Abeta antibodies can enhance Abeta neurotoxicity: implications for disease pathogenesis and vaccine development. Neuromolecular Medicine 3(1): 29-39, 2003

An alternative approach to amyloid fibrils morphology: CdSe/ZnS quantum dots labelled beta-amyloid peptide fragments Abeta (31-35), Abeta (1-40) and Abeta (1-42). Colloids and Surfaces. B, Biointerfaces 50(2): 104-111, 2006

Agrin binds to beta-amyloid (Abeta), accelerates abeta fibril formation, and is localized to Abeta deposits in Alzheimer's disease brain. Molecular and Cellular Neurosciences 15(2): 183-198, 2000

Quantifying amyloid beta-peptide (Abeta) aggregation using the Congo red-Abeta (CR-abeta) spectrophotometric assay. Analytical Biochemistry 266(1): 66-76, 1999

Peroxidase activity of cyclooxygenase-2 (COX-2) cross-links beta-amyloid (Abeta) and generates Abeta-COX-2 hetero-oligomers that are increased in Alzheimer's disease. Journal of Biological Chemistry 279(15): 14673-8, 2004

Short amyloid-beta (Abeta) immunogens reduce cerebral Abeta load and learning deficits in an Alzheimer's disease mouse model in the absence of an Abeta-specific cellular immune response. Journal of Neuroscience 26(18): 4717-4728, 2006

The amyloid-beta (Abeta) peptide pattern in cerebrospinal fluid in Alzheimer's disease: evidence of a novel carboxyterminally elongated Abeta peptide. Rapid Communications in Mass Spectrometry 17(12): 1291-1296, 2003

Targeting amyloid-beta peptide (Abeta) oligomers by passive immunization with a conformation-selective monoclonal antibody improves learning and memory in Abeta precursor protein (APP) transgenic mice. Journal of Biological Chemistry 281(7): 4292-4299, 2005

Amyloid beta -protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proceedings of the National Academy of Sciences of the United States of America 100(1): 330-335, 2002

Single chain variable fragments against beta-amyloid (Abeta) can inhibit Abeta aggregation and prevent abeta-induced neurotoxicity. Biochemistry 43(22): 6959-6967, 2004

Angiotensin-converting enzyme converts amyloid beta-protein 1-42 (Abeta(1-42)) to Abeta(1-40), and its inhibition enhances brain Abeta deposition. Journal of Neuroscience 27(32): 8628-8635, 2007

Copper binding to the amyloid-beta (Abeta) peptide associated with Alzheimer's disease: folding, coordination geometry, pH dependence, stoichiometry, and affinity of Abeta-(1-28): insights from a range of complementary spectroscopic techniques. Journal of Biological Chemistry 279(18): 18169-18177, 2004

A novel action of alzheimer's amyloid beta-protein (Abeta): oligomeric Abeta promotes lipid release. Journal of Neuroscience 21(18): 7226-7235, 2001