Subunit communications crucial for the functional integrity of the yeast RNA polymerase II elongator (gamma-toxin target (TOT) ) complex
Frohloff, F.; Jablonowski, D.; Fichtner, L.; Schaffrath, R.
Journal of Biological Chemistry 278(2): 956-961
2003
ISSN/ISBN: 0021-9258
PMID: 12424236
DOI: 10.1074/jbc.m210060200
Accession: 047474775
In response to the Kluyveromyces lactis zymocin, the gamma-toxin target (TOT) function of the Saccharomyces cerevisiae RNA polymerase II (pol II) Elongator complex prevents sensitive strains from cell cycle progression. Studying Elongator subunit communications, Tot1p (Elp1p), the yeast homologue of human IKK-associated protein, was found to be essentially involved in maintaining the structural integrity of Elongator. Thus, the ability of Tot2p (Elp2p) to interact with the HAT subunit Tot3p (Elp3p) of Elongator and with subunit Tot5p (Elp5p) is dependent on Tot1p (Elp1p). Also, the association of core-Elongator (Tot1-3p/Elp1-3p) with HAP (Elp4-6p/Tot5-7p), the second three-subunit subcomplex of Elongator, was found to be sensitive to loss of TOT1 (ELP1) gene function. Structural integrity of the HAP complex itself requires the ELP4/TOT7, ELP5/TOT5, and ELP6/TOT6 genes, and elp6Delta/tot6Delta as well as elp4Delta/tot7Delta cells can no longer promote interaction between Tot5p (Elp5p) and Tot2p (Elp2p). The association between Elongator and Tot4p (Kti12p), a factor that may modulate the TOT activity of Elongator, requires Tot1-3p (Elp1-3p) and Tot5p (Elp5p), indicating that this contact requires a preassembled holo-Elongator complex. Tot4p also binds pol II hyperphosphorylated at its C-terminal domain Ser(5) raising the possibility that Tot4p bridges the contact between Elongator and pol II.