+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Syncytium-inducing and non-syncytium-inducing capacity of human immunodeficiency virus type 1 subtypes other than B: phenotypic and genotypic characteristics. WHO Network for HIV Isolation and Characterization



Syncytium-inducing and non-syncytium-inducing capacity of human immunodeficiency virus type 1 subtypes other than B: phenotypic and genotypic characteristics. WHO Network for HIV Isolation and Characterization



Aids Research and Human Retroviruses 10(11): 1387-1400



Positively charged amino acid substitutions at positions 11 and 25 within the loop of the third variable region (V3) of HIV-1 subtype B envelope have been shown to be associated with the syncytium-inducing (SI) phenotype of the virus. The present study was designed to examine SI and NSI-associated V3 mutations in HIV-1 subtypes other than B. HIV-1 RNA was isolated from 53 virus stocks and 26 homologous plasma samples from 53 recently infected individuals from Brazil, Rwanda, Thailand, and Uganda. The C2-V3 region of the viral envelope was converted to cDNA, amplified, and sequenced. Of 53 primary virus stock samples 49 were biologically phenotyped through measurement of the syncytium-inducing capacity in MT-2 cells (to differentiate between SI and NSI phenotypes). In addition, after passage of primary isolates through PHA stimulated donor PBMC, the replication capacity was determined in U937-2, CEM, MT-2, and Jurkat-tat cell lines (to differentiate rapid/high and slow/low phenotypes). According to the sequence analysis 9 (17.0%) of the viruses belonged to subtype A, 15 (28.3%) to subtype B, 1 (1.9%) to subtype C, 13 (24.5%) to subtype D, and 15 (28.3%) to subtype E. Sequence analysis of virus RNA, obtained from 26 homologous plasma samples, confirmed the homogeneity of sequence populations in plasma compared to primary virus isolates. Of the 49 viruses tested 12 had the SI phenotype, 5 were confirmed to be rapid/high, and 4 appeared to be slow/low pattern 3 replicating. Of 49, 29 had the NSI phenotype, 24 were confirmed to be slow/low pattern 1 or 2, and 3 appeared to be slow/low pattern 3 replicating. Analysis of mutations at V3 loop amino acid positions 11 and 25 revealed that 10/12 (83.3%) of the SI viruses had SI-associated V3 mutations and that 28/29 (96.6%) of the NSI viruses lacked these mutations. V3 loop heterogeneity, length polymorphism, and a high number of positively charged amino acid substitutions were most frequently found among subtype D variants. These results indicate that both the phenotypic distinction between SI and NSI viruses and the association of biological phenotype with V3 mutations is present among HIV-1 subtypes other than B.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 047507948

Download citation: RISBibTeXText

PMID: 7888192

DOI: 10.1089/aid.1994.10.1387


Related references

Genetic variability and function of the long terminal repeat from syncytium-inducing and non-syncytium-inducing human immunodeficiency virus type 1. Aids Research and Human Retroviruses 12(9): 801-809, 1996

Cytopathic effects of non-syncytium-inducing and syncytium-inducing human immunodeficiency virus type 1 variants on different CD4(+)-T-cell subsets are determined only by coreceptor expression. Journal of Virology 75(21): 10455-9, 2001

Evolution of syncytium-inducing and non-syncytium-inducing biological virus clones in relation to replication kinetics during the course of human immunodeficiency virus type 1 infection. Journal of Virology 72(6): 5099-5107, 1998

Quantitative analysis of syncytium-inducing and non-syncytium-inducing virus in patients infected with human immunodeficiency virus type 1. Journal of Clinical Microbiology 33(1): 212-214, 1995

Differential syncytium inducing capacity of human immunodeficiency virus isolates frequent detection syncytium inducing isolates in patients with acquired immunodeficiency syndrome aids and aids related complex. Journal of Virology 62(6): 2026-2032, 1988

Nucleic acids and methods for the discrimination between syncytium inducing and non syncytium inducing variants of the human immunodeficiency virus. Official Gazette of the United States Patent & Trademark Office Patents 1257(5), 2002

Syncytium-inducing (SI) phenotype suppression at seroconversion after intramuscular inoculation of a non-syncytium-inducing/SI phenotypically mixed human immunodeficiency virus population. Journal of Virology 69(3): 1810-1818, 1995

Dynamics of syncytium-inducing and non-syncytium-inducing type 1 human immunodeficiency viruses during primary infection. Aids Research and Human Retroviruses 13(17): 1447-1451, 1997

Syncytium induction in primary CD4+ T-cell lines from normal donors by human immunodeficiency virus type 1 isolates with non-syncytium-inducing genotype and phenotype in MT-2 cells. Journal of Virology 69(11): 7099-7105, 1995

Changes in cellular virus load and zidovudine resistance of syncytium-inducing and non-syncytium-inducing human immunodeficiency virus populations under zidovudine pressure: a clonal analysis. Journal of Infectious Diseases 174(4): 845-849, 1996

Experimental HIV infection of human lymphoid tissue: correlation of CD4+ T cell depletion and virus syncytium-inducing/non-syncytium-inducing phenotype in histocultures inoculated with laboratory strains and patient isolates of HIV type 1. Aids Research and Human Retroviruses 13(6): 461-471, 1997

A cross-sectional comparison of persons with syncytium- and non-syncytium-inducing human immunodeficiency virus. Journal of Infectious Diseases 168(6): 1374-1379, 1993

Infectious virus titer, replicative and syncytium-inducing capacity of human immunodeficiency virus type 1. Journal Of Medical Virology. 45(1): 78-81, 1995

Isolation and characterization of a syncytium-inducing, macrophage/T-cell line-tropic human immunodeficiency virus type 1 isolate that readily infects chimpanzee cells in vitro and in vivo. Journal of Virology 69(7): 4453-4462, 1995

Isolation of CD4-independent primary human immunodeficiency virus type 1 isolates that are syncytium inducing and acutely cytopathic for CD8+ lymphocytes. Journal of Virology 78(3): 1243-1255, 2004