+ Site Statistics

+ Search Articles

+ PDF Full Text Service

How our service works

Request PDF Full Text

+ Follow Us

Follow on Facebook

Follow on Twitter

Follow on LinkedIn

+ Subscribe to Site Feeds

Most Shared

PDF Full Text

+ Translate

+ Recently Requested

An average-of-configuration method for using Kohn-Sham density functional theory in modeling ligand-field theory

Anthon, C.; Bendix, J.; Schäffer, C.E.

Inorganic Chemistry 42(13): 4088-4097

2003

The Amsterdam Density Functional (ADF) package has been used to constrain Kohn-Sham DFT in such a fashion that a transition from KS-DFT to ligand-field theory in the form of the parametrical d(q)() model is completely well-defined. A relationship is established between the strong-field approximation of the parametrical d(2) model for the tetrahedral complexes VCl(4)(-) and VBr(4)(-) and certain fixed-orbital ADF-computed energies. In this way values for all the parameters of the d(2)() model may be computed, thus allowing the ADF results to be expressed in terms of a KS-DFT energy matrix that can be diagonalized. This means that the KS-DFT deficiency with regard to computation of nondiagonal elements has been overcome and the KS-DFT eigenenergies have become available through the KS-DFT mimicking of the ligand-field plus repulsion model. By using mutually orthogonal strong-field energy matrices, the mimicking has been further elucidated. The computed values for the empirical parameters of VCl(4)(-) and VBr(4)(-) are in good agreement with experimental data. The spectrochemical and the nephelauxetic series have been computed by including the remaining halide complexes and the quantitatively special position of F(-)() among the halides corroborated for both series.

Related references

**Open-system Kohn-Sham density functional theory**. Journal of Chemical Physics 136(9): 094105, 2012