+ Site Statistics
References:
54,258,434
Abstracts:
29,560,870
PMIDs:
28,072,757
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta



Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta



International Journal of Systematic and Evolutionary Microbiology 55(Pt 2): 569-575



Highly diverse Bradyrhizobium strains nodulate genistoid legumes (brooms) in the Canary Islands, Morocco, Spain and the Americas. Phylogenetic analyses of ITS, atpD, glnII and recA sequences revealed that these isolates represent at least four distinct evolutionary lineages within the genus, namely Bradyrhizobium japonicum and three unnamed genospecies. DNA-DNA hybridization experiments confirmed that one of the latter represents a new taxonomic species for which the name Bradyrhizobium canariense is proposed. B. canariense populations experience homologous recombination at housekeeping loci, but are sexually isolated from sympatric B. japonicum bv. genistearum strains in soils of the Canary Islands. B. canariense strains are highly acid-tolerant, nodulate diverse legumes in the tribes Genisteae and Loteae, but not Glycine species, whereas acid-sensitive B. japonicum soybean isolates such as USDA 6(T) and USDA 110 do not nodulate genistoid legumes. Based on host-range experiments and phylogenetic analyses of symbiotic nifH and nodC sequences, the biovarieties genistearum and glycinearum for the genistoid legume and soybean isolates, respectively, were proposed. B. canariense bv. genistearum strains display an overlapped host range with B. japonicum bv. genistearum isolates, both sharing monophyletic nifH and nodC alleles, possibly due to the lateral transfer of a conjugative chromosomal symbiotic island across species. B. canariense is the sister species of B. japonicum, as inferred from a maximum-likelihood Bradyrhizobium species phylogeny estimated from congruent glnII+recA sequence partitions, which resolves eight species clades. In addition to the currently described species, this phylogeny uncovered the novel Bradyrhizobium genospecies alpha and beta and the photosynthetic strains as independent evolutionary lineages. The type strain for B. canariense is BTA-1(T) (=ATCC BAA-1002(T)=LMG 22265(T)=CFNE 1008(T)).

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 048405131

Download citation: RISBibTeXText

PMID: 15774626

DOI: 10.1099/ijs.0.63292-0


Related references

Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. International Journal of Systematic and Evolutionary Microbiology 55(2): 569-575, 2005

Whole-Genome Sequences of 14 Strains of Bradyrhizobium canariense and 1 Strain of Bradyrhizobium japonicum Isolated from Lupinus spp. in Algeria. Genome Announcements 5(29), 2017

Bradyrhizobium canariense and Bradyrhizobium japonicum are the two dominant rhizobium species in root nodules of lupin and serradella plants growing in Europe. Systematic and Applied Microbiology 34(5): 368-375, 2011

Presence of natural variants of Bradyrhizobium elkanii and Bradyrhizobium japonicum and detection of Bradyrhizobium yuanmingense in Phitsanulok province, Thailand. Scienceasia 38(1): 24-29, 2012

Bradyrhizobium elkanii, Bradyrhizobium yuanmingense and Bradyrhizobium japonicum are the main rhizobia associated with Vigna unguiculata and Vigna radiata in the subtropical region of China. Fems Microbiology Letters 285(2): 146-154, 2008

Repeated sequence RS-alpha is diagnostic for Bradyrhizobium japonicum and Bradyrhizobium elkanii. Biology & Fertility of Soils 23(1): 15-19, 1996

Efficiency of different formulations of Bradyrhizobium japonicum and effect of co-inoculation of Bacillus subtilis with two different strains of Bradyrhizobium japonicum. World Journal of Microbiology and Biotechnology 28(7): 2541-2550, 2013

Sulfur nutrition of free living and symbiotic Bradyrhizobium japonicum and Bradyrhizobium sp. (Arachis). ACIAR proceedings series: 8) 275, 1987

Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Canadian Journal of Microbiology 38(6): 501-505, 1992

Eficincia simbitica de estirpes Hup+, Hup hr e Hup- de Bradyrhizobium japonicum e Bradyrhizobium elkanii em cultivares de caupi. Pesquisa Agropecuária Brasileira 34(10): 1925-1931, 1999

Effect of titanium on the growth of bradyrhizobium japonicum and bradyrhizobium lupini strains. Acta Microbiologica Polonica 39(1-2): 51-58, 1990

The ftsA gene as a molecular marker for phylogenetic studies in Bradyrhizobium and identification of Bradyrhizobium japonicum. Journal of Applied Genetics 2018, 2018

Precipitation of Metallic Cations by the Acidic Exopolysaccharides from Bradyrhizobium japonicum and Bradyrhizobium (Chamaecytisus) Strain BGA-1. Applied and Environmental Microbiology 60(12): 4531-4536, 1994

Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. International Journal of Systematic and Evolutionary Microbiology 63(Pt 9): 3342-3351, 2014

Adhesion behaviour of Bradyrhizobium japonicum and Bradyrhizobium elkanii strains: evidence of duality between the two species. Soil biology and biochemistry 27(12): 1657-1660, 1995