Galactose Oxidase models: 19F NMR as a powerful tool to study the solution chemistry of tripodal ligands in the presence of copper (II)
Michel, F.; Hamman, S.; Thomas, F.; Philouze, C.; Gautier-Luneau, I.; Pierre, J.-L.
Chemical Communications 39: 4122-4124
2006
ISSN/ISBN: 1359-7345 PMID: 17024269 DOI: 10.1039/b605852c
Accession: 049132180
In copper(ii) complexes of tripodal ligands, the protonation state of the phenol moiety, and its position (axial vs. equatorial), are easily assessed by (19)F NMR.
PDF emailed within 0-6 h: $19.90
Related References
Michel, F.; Thomas, F.; Hamman, S.; Saint-Aman, E.; Bucher, C.; Pierre, J.-L. 2004: Galactose oxidase models: solution chemistry, and phenoxyl radical generation mediated by the copper status Chemistry 10(17): 4115-4125Ziegelhoeffer A.; De Jong J.W.; Ferrari R.; Turi Nagy L. 2001: Copper(II) complexes of sterically hindered phenolate ligands as structural models for the active site in galactose oxidase and glyoxal oxidase: X-ray crystal structure and spectral and redox properties Inorganica Chimica Acta 324(1-2): 241-251
Vaidyanathan, M.; Palaniandavar, M. 2000: Models for the active site in galactose oxidase: Structure, spectra and redox of copper(II) complexes of certain phenolate ligands Journal of Chemical Sciences 112(3): 223-238
Michel, F.; Thomas, F.; Hamman, S.; Philouze, C.; Saint‐Aman, E.; Pierre, J. 2006: Galactose Oxidase Models: Creation and Modification of Proton Transfer Coupled to Copper(II) Coordination Processes in Pro‐Phenoxyl Ligands European Journal of Inorganic Chemistry 18: 3684-3696
Colomban, C.; Philouze, C.; Molton, F.; Leconte, N.; Thomas, F. 2018: Copper(II) complexes of N3O ligands as models for galactose oxidase: Effect of variation of steric bulk of coordinated phenoxyl moiety on the radical stability and spectroscopy Inorganica Chimica Acta 481: 129-142
Fujisawa, K. 2003: Copper-dioxygen chemistry with N3 tripodal ligands Journal of Inorganic Biochemistry 96(1): 74, 15 July
Bereman, R.D. 1977: Characterization of copper ligands in galactose oxidase Federation Proceedings 36: 698
Marion, R.; Zaarour, M.; Qachachi, N.A.; Saleh, N.M.; Justaud, F.; Floner, D.; Lavastre, O.; Geneste, F. 2011: Characterization and catechole oxidase activity of a family of copper complexes coordinated by tripodal pyrazole-based ligands Journal of Inorganic Biochemistry 105(11): 1391-1397
Lee, Y.; Park, G.Y.; Lucas, H.R.; Vajda, P.L.; Kamaraj, K.; Vance, M.A.; Milligan, A.E.; Woertink, J.S.; Siegler, M.A.; Narducci Sarjeant, A.A.; Zakharov, L.N.; Rheingold, A.L.; Solomon, E.I.; Karlin, K.D. 2009: Copper(I)/O2 chemistry with imidazole containing tripodal tetradentate ligands leading to mu-1,2-peroxo-dicopper(II) species Inorganic Chemistry 48(23): 11297-11309
Thomas, N. Sorrell; William, E. Allen; Peter, S. White 1995: Synthetic models for copper proteins utilizing tripodal ligands Journal of Inorganic Biochemistry 59(2-3): 659-0
Cheng-Yong Su; Bei-Sheng Kang; Ting-Bin Wen; Ye-Xiang Tong; Xiao-Ping Yang; Cheng Zhang; Han-Qin Liu; Jie Sun 1999: Chemistry of tripodal ligands. Part III.: Copper complexes of tris(benzimidazol-2-ylmethyl)amine and of its N-n-propyl derivative Polyhedron 18(11): 1577-1585
Hirtenlehner, C; Tordin, E; Monkowius, U; List, M; Knör, Günther 2014: Studies on the photoredox behavior of copper(II) acetato complexes with tripodal 4N ligands in methanol solution Inorganic Chemistry Communications 39: 31-33
Ambundo, E.A.; Deydier, M.V.; Ochrymowycz, L.A.; Rorabacher, D.B. 2000: Kinetics and mechanism of copper(II) complex formation with tripodal aminopolythiaether and aminopolypyridyl ligands in aqueous solution Inorganic Chemistry 39(6): 1171-1179
Hess, M.; Weyhermueller, T.; Wieghardt, K.; Chaudhuri, P. 1999: Functional models for galactose oxidase and copper-containing amine oxidases Aerobic oxidation of alcohols and amines catalytically by copper complexes Journal of Inorganic Biochemistry 74(1-4): 93
Keck, M.; Hoof, S.; Herwig, C.; Vigalok, A.; Limberg, C. 2019: Oxygen-Depleted Calixarenes as Ligands for Molecular Models of Galactose Oxidase Chemistry 25(58): 13285-13289
Dacosta, G.; Kosman, D. 1982: Simple copper ii complexes as models of galactose oxidase Federation Proceedings 41(4): Abstract 5153
Pola, R.; Braunová, A.; Laga, R.; Pechar, M.; Ulbrich, K. 2014: Click chemistry as a powerful and chemoselective tool for the attachment of targeting ligands to polymer drug carriers POLYM. Chem. 5(4): 1340-1350
Ziegelhoeffer A.; De Jong J.W.; Ferrari R.; Turi Nagy L. 1995: Models for galactose oxidase: Copper(II) complexes with axial phenolate Journal of Inorganic Biochemistry 59(2-3): 686-0
Ettinger, M.J.; Kosman, D.J. 1974: Circular dichroism spectra of the copper enzyme, galactose oxidase, in the presence of its substrates and products Biochemistry 13(6): 1247-1251
Sokolowski, A; Leutbecher, H; Weyhermüller, T; Schnepf, R; Bothe, E; Bill, E; Hildebrandt, P; Wieghardt, K. 1997: Phenoxyl-copper(II) complexes: models for the active site of galactose oxidase Jbic Journal of Biological Inorganic Chemistry 2(4): 444-453