+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Prediction of amino acid pairs sensitive to mutations in the spike protein from SARS related coronavirus



Prediction of amino acid pairs sensitive to mutations in the spike protein from SARS related coronavirus



Peptides 24(12): 1837-1845



In this study, we analyzed the amino acid pairs affected by mutations in two spike proteins from human coronavirus strains 229E and OC43 by means of random analysis in order to gain some insight into the possible mutations in the spike protein from SARS-CoV. The results demonstrate that the randomly unpredictable amino acid pairs are more sensitive to the mutations. The larger is the difference between actual and predicted frequencies, the higher is the chance of mutation occurring. The effect induced by mutations is to reduce the difference between actual and predicted frequencies. The amino acid pairs whose actual frequencies are larger than their predicted frequencies are more likely to be targeted by mutations, whereas the amino acid pairs whose actual frequencies are smaller than their predicted frequencies are more likely to be formed after mutations. These findings are identical to our several recent studies, i.e. the mutations represent a process of degeneration inducing human diseases.

Please choose payment method:






(PDF emailed within 1 workday: $29.90)

Accession: 049975809

Download citation: RISBibTeXText

PMID: 15127935


Related references

Differential sensitivities of severe acute respiratory syndrome (SARS) coronavirus spike polypeptide enzyme-linked immunosorbent assay (ELISA) and SARS coronavirus nucleocapsid protein ELISA for serodiagnosis of SARS coronavirus pneumonia. Journal of Clinical Microbiology 43(7): 3054-3058, 2005

Amino acids 1 to 422 of the spike protein of SARS associated coronavirus are required for induction of cyclooxygenase-2. Virus Genes 33(3): 309-317, 2006

A single amino acid substitution (R441A) in the receptor-binding domain of SARS coronavirus spike protein disrupts the antigenic structure and binding activity. Biochemical and Biophysical Research Communications 344(1): 106-113, 2006

SARS coronavirus spike polypeptide DNA vaccine priming with recombinant spike polypeptide from Escherichia coli as booster induces high titer of neutralizing antibody against SARS coronavirus. Vaccine 23(42): 4959-4968, 2005

Mapping a neutralizing epitope on the SARS coronavirus spike protein: computational prediction based on affinity-selected peptides. Journal of Molecular Biology 359(1): 190-201, 2006

Baculovirus surface display of SARS coronavirus (SARS-CoV) spike protein and immunogenicity of the displayed protein in mice models. Dna and Cell Biology 25(12): 668-673, 2006

Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination. Journal of Virology 89(20): 10532-10547, 2015

Peptide mimicrying between SARS coronavirus spike protein and human proteins reacts with SARS patient serum. Journal of Biomedicine & Biotechnology 2008: 326464-326464, 2008

Mutagenesis of the transmembrane domain of the SARS coronavirus spike glycoprotein: refinement of the requirements for SARS coronavirus cell entry. Virology Journal 6: 230, 2009

First identification of a single amino acid change in the spike protein region of feline coronavirus detected from a coronavirus-associated cutaneous nodule in a cat. Jfms Open Reports 4(2): 2055116918801385, 2018

A follow up study of total IgM, IgG, nucleoprotein and spike protein antibodies against severe acute respiratory syndrome (SARS) coronavirus in patients with SARS. Zhonghua Nei Ke Za Zhi 45(11): 896-899, 2006

Determination of amino acid pairs in human p53 protein sensitive to mutations/variants by means of a random approach. Journal of Molecular Modeling 9(5): 337-341, 2003

Identification of immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) coronavirus: implication for developing SARS diagnostics and vaccines. Journal of Immunology 173(6): 4050-4057, 2004

Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet 363(9427): 2122-2127, 2004

Immunogenicity difference between the SARS coronavirus and the bat SARS-like coronavirus spike (S) proteins. Biochemical and Biophysical Research Communications 387(2): 326-329, 2009