+ Site Statistics
References:
54,258,434
Abstracts:
29,560,870
PMIDs:
28,072,757
+ Search Articles
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ PDF Full Text
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Translate
+ Recently Requested

A thermostable triple mutant of pyranose 2-oxidase from Trametes multicolor with improved properties for biotechnological applications



A thermostable triple mutant of pyranose 2-oxidase from Trametes multicolor with improved properties for biotechnological applications



Biotechnology Journal 4(4): 525-534



In order to increase the thermal stability and the catalytic properties of pyranose oxidase (P2Ox) from Trametes multicolor toward its poor substrate D-galactose and the alternative electron acceptor 1,4-benzoquinone (1,4-BQ), we designed the triple-mutant T169G/E542K/V546C. Whereas the wild-type enzyme clearly favors D-glucose as its substrate over D-galactose [substrate selectivity (k(cat)/K(M))(Glc)/(k(cat)/K(M))(Gal) = 172], the variant oxidizes both sugars equally well [(k(cat)/K(M))(Glc)/(k(cat)/K(M))(Gal) = 0.69], which is of interest for food biotechnology. Furthermore, the variant showed lower K(M) values and approximately ten-fold higher k(cat) values for 1,4-BQ when D-galactose was used as the saturating sugar substrate, which makes this enzyme particularly attractive for use in biofuel cells and enzyme-based biosensors. In addition to the altered substrate specificity and reactivity, this mutant also shows significantly improved thermal stability. The half life time at 60 degrees C was approximately 10 h, compared to 7.6 min for the wild-type enzyme. We performed successfully small-scale bioreactor pilot conversion experiments of D-glucose/D-galactose mixtures at both 30 and 50 degrees C, showing the usefulness of this P2Ox variant in biocatalysis as well as the enhanced thermal stability of the enzyme. Moreover, we determined the crystal structure of the mutant in its unligated form at 1.55 A resolution. Modeling D-galactose in position for oxidation at C2 into the mutant active site shows that substituting Thr for Gly at position 169 favorably accommodates the axial C4 hydroxyl group that would otherwise clash with Thr169 in the wild-type.

(PDF emailed within 0-6 h: $19.90)

Accession: 051276602

Download citation: RISBibTeXText

PMID: 19291706

DOI: 10.1002/biot.200800260


Related references

Structural basis for binding of fluorinated glucose and galactose to Trametes multicolor pyranose 2-oxidase variants with improved galactose conversion. Plos One 9(1): E86736, 2014

Kinetic mechanism of pyranose 2-oxidase from trametes multicolor. Biochemistry 48(19): 4170-4180, 2009

Production of a novel pyranose 2-oxidase by basidiomycete Trametes multicolor. Applied Biochemistry and Biotechnology 70-72: 237-248, 1998

Biochemical characteristics of Trametes multicolor pyranose oxidase and Aspergillus niger glucose oxidase and implications for their functionality in wheat flour dough. Food Chemistry 131(4): 1485-1492, 2012

Purification and characterization of pyranose oxidase from the white rot fungus Trametes multicolor. Applied and Environmental Microbiology 67(8): 3636-3644, 2001

The bread dough stability improving effect of pyranose oxidase from trametes multicolor and glucose oxidase from Aspergillus niger: unraveling the molecular mechanism. Journal of Agricultural and Food Chemistry 61(32): 7848-7854, 2014

Mutations of Thr169 affect substrate specificity of pyranose 2-oxidase from Trametes multicolor. Biocatalysis and Biotransformation 26(1-2): 120-127, 2008

Impact of pyranose oxidase from Trametes multicolor, glucose oxidase from Aspergillus niger and hydrogen peroxide on protein agglomeration in wheat flour gluten-starch separation. Food Chemistry 148: 235-239, 2014

Crystallization and preliminary X-ray diffraction analysis of pyranose 2-oxidase from the white-rot fungus Trametes multicolor. Acta Crystallographica. Section D, Biological Crystallography 60(Pt 1): 197-199, 2003

Conformational heterogeneity in pyranose 2-oxidase from Trametes multicolor revealed by ultrafast fluorescence dynamics. Journal of Photochemistry and Photobiology A: Chemistry 234: 44-48, 2012

Oxidation of Phe454 in the Gating Segment Inactivates Trametes multicolor Pyranose Oxidase during Substrate Turnover. Plos One 11(2): E0148108, 2016

Identification of the covalent flavin adenine dinucleotide-binding region in pyranose 2-oxidase from Trametes multicolor. Analytical Biochemistry 314(2): 235-242, 2003

Probing active-site residues of pyranose 2-oxidase from Trametes multicolor by semi-rational protein design. Biotechnology Journal 4(4): 535-543, 2009

Enzymatic formation of dicarbonyl sugars: C-2 oxidation of 1->6 disaccharides gentiobiose, isomaltose and melibiose by pyranose 2-oxidase from Trametes multicolor. Journal of Carbohydrate Chemistry 18(8): 999-1007, 1999

Enzymatic formation of dicarbonyl sugars: C-2 oxidation of 1 leads to 6 disaccharides gentiobiose, isomaltose and melibiose by pyranose 2-oxidase from Trametes multicolor. Journal of carbohydrate chemistry8(8): 999-1007, 1999