+ Site Statistics

+ Search Articles

+ Subscribe to Site Feeds

Most Shared

PDF Full Text

+ PDF Full Text

Request PDF Full Text

+ Follow Us

Follow on Facebook

Follow on Twitter

Follow on LinkedIn

+ Translate

+ Recently Requested

Assessment of charge-transfer excitations with time-dependent, range-separated density functional theory based on long-range MP2 and multiconfigurational self-consistent field wave functions

Hedegård, E.Donovan.; Heiden, F.; Knecht, S.; Fromager, E.; Jensen, H.Jørgen.Aagaard.

Journal of Chemical Physics 139(18): 184308

2014

Charge transfer excitations can be described within Time-Dependent Density Functional Theory (TD-DFT), not only by means of the Coulomb Attenuated Method (CAM) but also with a combination of wave function theory and TD-DFT based on range separation. The latter approach enables a rigorous formulation of multi-determinantal TD-DFT schemes where excitation classes, which are absent in conventional TD-DFT spectra (like for example double excitations), can be addressed. This paper investigates the combination of both the long-range Multi-Configuration Self-Consistent Field (MCSCF) and Second Order Polarization Propagator Approximation (SOPPA) ansätze with a short-range DFT (srDFT) description. We find that the combinations of SOPPA or MCSCF with TD-DFT yield better results than could be expected from the pure wave function schemes. For the Time-Dependent MCSCF short-range DFT ansatz (TD-MC-srDFT) excitation energies calculated over a larger benchmark set of molecules with predominantly single reference character yield good agreement with their reference values, and are in general comparable to the CAM-B3LYP functional. The SOPPA-srDFT scheme is tested for a subset of molecules used for benchmarking TD-MC-srDFT and performs slightly better against the reference data for this small subset. Beyond the proof-of-principle calculations comprising the first part of this contribution, we additionally studied the low-lying singlet excited states (S1 and S2) of the retinal chromophore. The chromophore displays multireference character in the ground state and both excited states exhibit considerable double excitation character, which in turn cannot be described within standard TD-DFT, due to the adiabatic approximation. However, a TD-MC-srDFT approach can account for the multireference character, and excitation energies are obtained with accuracy comparable to CASPT2, although using a much smaller active space.

Related references