Atypical development of behavioural sensitization to 3,4-methylenedioxymethamphetamine (MDMA, 'Ecstasy') in adolescent rats and its expression in adulthood: role of the MDMA chirality
Von Ameln, N.; von Ameln-Mayerhofer, A.
Addiction Biology 15(1): 35-44
2010
ISSN/ISBN: 1369-1600 PMID: 20002021 DOI: 10.1111/j.1369-1600.2009.00187.x
Accession: 051712550
Despite the great popularity of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) as a drug of abuse, not much is known about the detailed mechanisms of the acute and subchronic effects of the drug. There is especially a lack of information about the distinct behavioural effects of its optical isomers (enantiomers) R- and S-MDMA compared with the racemic RS-MDMA. For this purpose, adolescent rats were repetitively treated during two treatment stages (stage 1: days 1-10; stage 2: days 15, 17, 19) with RS-MDMA (5 or 10 mg/kg) or each of the respective enantiomers (5 mg/kg). The repeated treatment started on postnatal day (PND) 32 and locomotor activity was measured on each day by means of a photobeam-equipped activity box system. RS-MDMA or S-MDMA administration led acutely to massive hyperlocomotion and subchronically, to the development of behavioural sensitization after a short habituation period. R-MDMA was free of hyperactivating effects and even decreased locomotor behaviour upon repeated treatment. Nevertheless, co-administration of R-MDMA increased the hyperactivity of S-MDMA and made the S-MDMA induced behavioural sensitization state-dependent. The animals pre-treated with R-MDMA showed a sensitized response in adulthood when tested with RS-MDMA. Our results indicated that even in the absence of substantial neurotoxicity, both MDMA enantiomers can lead to long-term changes in brain circuitry and concomitant behavioural changes when repeatedly administered in adolescence. The sensitization development was most pronounced in the animals treated with S- and RS-MDMA; the animals with R-MDMA did not develop sensitization under repeated treatment but expressed a sensitized response when challenged with RS-MDMA.