+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Combined contrast-enhanced magnetic resonance and diffusion-weighted imaging reading adapted to the "Breast Imaging Reporting and Data System" for multiparametric 3-T imaging of breast lesions



Combined contrast-enhanced magnetic resonance and diffusion-weighted imaging reading adapted to the "Breast Imaging Reporting and Data System" for multiparametric 3-T imaging of breast lesions



European Radiology 23(7): 1791-1802



To develop and assess a combined reading for contrast-enhanced magnetic resonance (CE-MRI) and diffusion weighted imaging (DWI) adapted to the BI-RADS for multiparametric MRI of the breast at 3 T. A total of 247 patients with histopathologically verified breast lesions were included in this IRB-approved prospective study. All patients underwent CE-MR and DWI at 3 T. MRIs were classified according to BI-RADS and assessed for apparent diffusion coefficient (ADC) values. A reading method that adapted ADC thresholds to the assigned BI-RADS classification was developed. Sensitivity, specificity, diagnostic accuracy and the area under the curve were calculated. BI-RADS-adapted reading was compared with previously published reading methods in the same population. Inter- and intra-reader variability was assessed. Sensitivity of BI-RADS-adapted reading was not different from the high sensitivity of CE-MRI (P = 0.4). BI-RADS-adapted reading maximised specificity (89.4 %), which was significantly higher compared with CE-MRI (P < 0.001). Previous reading methods did not perform as well as the BI-RADS method except for a logistic regression model. BI-RADS-adapted reading was more sensitive in non-mass-like enhancements (NMLE) and was more robust to inter- and intra-reader variability. Multiparametric 3-T MRI of the breast using a BI-RADS-adapted reading is fast, simple to use and significantly improves the diagnostic accuracy of breast MRI. KEYPOINTS : • Multiparametric breast 3-T MRI with BI-RADS-adapted reading improves diagnostic accuracy. • BI-RADS-adapted reading of CE-MRI and DWI is based on established reporting guidelines. • BI-RADS-adapted reading is fast and easy to use in routine clinical practice. • BI-RADS-adapted reading is robust to intra- and inter-reader variability.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 052178066

Download citation: RISBibTeXText

PMID: 23504036

DOI: 10.1007/s00330-013-2771-8


Related references

Improved diagnostic accuracy with multiparametric magnetic resonance imaging of the breast using dynamic contrast-enhanced magnetic resonance imaging, diffusion-weighted imaging, and 3-dimensional proton magnetic resonance spectroscopic imaging. Investigative Radiology 49(6): 421-430, 2014

Potential of Noncontrast Magnetic Resonance Imaging With Diffusion-Weighted Imaging in Characterization of Breast Lesions: Intraindividual Comparison With Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Investigative Radiology 53(4): 229-235, 2018

Diffusion-Weighted Imaging With Apparent Diffusion Coefficient Mapping for Breast Cancer Detection as a Stand-Alone Parameter: Comparison With Dynamic Contrast-Enhanced and Multiparametric Magnetic Resonance Imaging. Investigative Radiology 53(10): 587-595, 2018

Accuracy of combined dynamic contrast-enhanced magnetic resonance imaging and diffusion-weighted imaging for breast cancer detection: a meta-analysis. Acta Radiologica 57(6): 651-660, 2016

Apparent Diffusion Coefficient to Subdivide Breast Imaging Reporting and Data System Magnetic Resonance Imaging (BI-RADS-MRI) Category 4 Lesions. Medical Science Monitor 24: 2180-2188, 2018

Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging. Bju International 107(9): 1411-1418, 2011

Effects of contrast-enhancement on diffusion weighted imaging and apparent diffusion coefficient measurements in 3-T magnetic resonance imaging of breast lesions. Acta Radiologica 59(8): 902-908, 2018

Role of diffusion weighted imaging and magnetic resonance spectroscopy in breast cancer patients with indeterminate dynamic contrast enhanced magnetic resonance imaging findings. Magnetic Resonance Imaging 61: 66-72, 2019

Dynamic contrast-enhanced magnetic resonance imaging and diffusion-weighted magnetic resonance imaging for predicting the response of locally advanced breast cancer to neoadjuvant therapy: a meta-analysis. Journal of Medical Imaging 5(1): 011011, 2018

Evaluation of the efficacy of neoadjuvant chemotherapy for breast cancer using diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging. Neoplasma 64(3): 430-436, 2017

Primary breast osteosarcoma: dynamic contrast-enhanced magnetic resonance imaging, proton spectroscopy and diffusion weighted imaging findings. Annals of the Academy of Medicine Singapore 41(10): 473-475, 2012

Diagnostic assessment by dynamic contrast-enhanced and diffusion-weighted magnetic resonance in differentiation of breast lesions under different imaging protocols. Bmc Cancer 14: 366, 2014

Feasibility of 7 Tesla breast magnetic resonance imaging determination of intrinsic sensitivity and high-resolution magnetic resonance imaging, diffusion-weighted imaging, and (1)H-magnetic resonance spectroscopy of breast cancer patients receiving neoadjuvant therapy. Investigative Radiology 46(6): 370-376, 2011

Multiparametric MR Imaging with High-Resolution Dynamic Contrast-enhanced and Diffusion-weighted Imaging at 7 T Improves the Assessment of Breast Tumors: A Feasibility Study. Radiology 276(2): 360-370, 2015

Combined reading of Contrast Enhanced and Diffusion Weighted Magnetic Resonance Imaging by using a simple sum score. European Radiology 26(3): 884-891, 2016