EurekaMag
+ Translate
+ Most Popular
The pigeon tick (Argas reflexus): its biology, ecology, and epidemiological aspects
Prevalence of hemoglobin abnormalities in Kebili (Tunisian South)
Lipogranuloma: a preventable complication of dacryocystorhinostomy
Value of basal plasma cortisol assays in the assessment of pituitary-adrenal insufficiency
Bees from the Belgian Congo. The acraensis group of Anthophora
Placing gingival retraction cord
Total serum IgE, allergy skin testing, and the radioallergosorbent test for the diagnosis of allergy in asthmatic children
Acariens plumicoles Analgesoidea parasites des oiseaux du Maroc
Injuries of terminal phalanges of the fingers in children
Biology of flowering and nectar production in pear (Pyrus communis)
Das Reliktvorkommen der Aspisviper (Vipera aspis L.) im Schwarzwald
Hydrological modelling of drained blanket peatland
Pathologic morphology and clinical significance of the anomalous origin of the left circumflex coronary artery from the right coronary artery. General review and autopsy analysis of 30 cases
Cyto genetic analyses of lymphocyte cultures after exposure to calcium cyclamate
Axelrodia riesei, a new characoid fish from Upper Rio Meta in Colombia With remarks concerning the genus Axelrodia and description of a similar, sympatric, Hyphessobrycon-species
Favorable evolution of a case of tuberculosis of pancreas under antibiotic action
RIFM fragrance ingredient safety assessment, Valencene, CAS Registry Number 4630-07-3
Parenteral microemulsions: an overview
Temperate pasture: management for grazing and conservation
Evaluation of a new coprocessed compound based on lactose and maize starch for tablet formulation
Thermal expansion and cracking of three confined water-saturated igneous rocks to 800C
Revision of the genera of the tribe Stigmoderini (Coleoptera: Buprestidae) a discussion of phylogenetic relationships
Anal tuberculosis. Report of a case
Gastric tuberculosis in the past and present
Adaptive responses of the cardiovascular system to prolonged spaceflight conditions: assessment with Holter monitoring

Efficacy studies of Reactive Skin Decontamination Lotion, M291 Skin Decontamination Kit, 0.5% bleach, 1% soapy water, and Skin Exposure Reduction Paste Against Chemical Warfare Agents, part 1: guinea pigs challenged with VX


Efficacy studies of Reactive Skin Decontamination Lotion, M291 Skin Decontamination Kit, 0.5% bleach, 1% soapy water, and Skin Exposure Reduction Paste Against Chemical Warfare Agents, part 1: guinea pigs challenged with VX



Cutaneous and Ocular Toxicology 30(1): 15-28



ISSN/ISBN: 1556-9527

PMID: 20942572

DOI: 10.3109/15569527.2010.515280

This report, first in a series of five, directly compares the efficacy of 4 decontamination products and Skin Exposure Reduction Paste Against Chemical Warfare Agents (SERPACWA) in the haired guinea pig model following exposure to VX. In all experiments, guinea pigs were close-clipped and given anesthesia. In the decontamination experiments, the animals were challenged with VX and decontaminated after a 2-minute delay for the standard procedure or at longer times for the delayed-decontamination experiments. Skin Exposure Reduction Paste Against Chemical Warfare Agents was applied as a thin coating (0.1 mm thick), allowed to dry for 15 minutes, and challenged with VX. After a 2-hour challenge, any remaining VX was blotted off the animal, but no additional decontamination was done. Positive control animals were challenged with VX in the same manner as the treated animals, except that they received no treatment. In addition, the positive control animals were always challenged with 5% VX in isopropyl alcohol (IPA) solution, whereas the treatment animals received either neat (undiluted) VX or 5% VX in IPA solution. All animals were observed during the first 4 hours and again at 24 hours after exposure for signs of toxicity and death. The protective ratio (PR, defined as the median lethal dose [LD(50)] of the treatment group divided by the LD(50) of the untreated positive control animals) was calculated from the probit dose-response curves established for each treatment group and nontreated control animals. Significance in this report was defined as p < .05. In the standard 2-minute neat VX decontamination experiments, the calculated PRs for Reactive Skin Decontamination Lotion (RSDL), 0.5% bleach, 1% soapy water, and the M291 Skin Decontamination Kit (SDK) were 66, 17, 16, and 1.1, respectively. Reactive Skin Decontamination Lotion was by far the most effective decontamination product tested and was significantly better than any of the other products. Bleach and soapy water provided equivalent and good (PR > 5) protection. They were both significantly better than the M291 SDK. The M291 SDK did not provide significant protection compared with positive controls. In the neat VX delayed-decontamination experiments, the calculated LT(50) (the delayed-decontamination time at which 50% of the animals died in the test population following a 5-LD(50) challenge) values for RSDL, 0.5% bleach, and 1% soapy water were 31, 48, and 26 minutes, respectively. The results showed that SERPACWA provided significant, but modest (PR < 5), protection against neat VX, with a PR of 2.1. Several conclusions can be drawn from this study: 1) RSDL provided superior protection against VX compared with the other products tested; 2) 0.5% bleach and 1% soapy water were less effective than RSDL, but still provided good protection against VX; 3) the M291 SDK was the least effective decontamination product and did not provide significant protection against VX; 4) the agent was observed to streak when using the M291 SDK, and efficacy may improve if the agent is first blotted, followed by wiping with a new or clean part of the M291 SDK pad; 5) RSDL, 0.5% bleach, and 1% soapy water provided significant protection against a 5-LD(50) challenge of VX, even when decontamination was delayed for up to about 30 minutes; and 6) SERPACWA provided significant, but modest, protection against VX.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 052905746

Download citation: RISBibTeXText

Related references

Efficacy studies of Reactive Skin Decontamination Lotion, M291 Skin Decontamination Kit, 0.5% bleach, 1% soapy water, and Skin Exposure Reduction Paste Against Chemical Warfare Agents, part 2: guinea pigs challenged with soman. Cutaneous and Ocular Toxicology 30(1): 29-37, 2011

In vitro decontamination efficacy of the RSDL® (Reactive Skin Decontamination Lotion Kit) lotion component against riot control agents: Capsaicin, Mace™ (CN) and CS. Toxicology Letters 332: 36-41, 2020

In vitro human skin permeation and decontamination of diisopropyl methylphosphonate (DIMP) using Dermal Decontamination Gel (DDGel) and Reactive Skin Decontamination Lotion (RSDL) at different timepoints. Toxicology Letters 299: 118-123, 2018

In vitro human skin permeation and decontamination of 2-chloroethyl ethyl sulfide (CEES) using Dermal Decontamination Gel (DDGel) and Reactive Skin Decontamination Lotion (RSDL). Toxicology Letters 291: 86-91, 2018

In vitro human skin permeation and decontamination of 2-chloroethyl ethyl sulfide (CEES) using Dermal Decontamination Gel (DDGel) and Reactive Skin Decontamination Lotion (RSDL). Toxicology Letters 291: 86-91, 2018

In vitro human skin decontamination efficacy of MOF-808 in decontamination lotion following exposure to the nerve agent VX. Toxicology Letters 339: 32-38, 2021

Decontamination efficacy of soapy water and water washing following exposure of toxic chemicals on human skin. Cutaneous and Ocular Toxicology 39(2): 134-142, 2020

Comparison of skin decontamination efficacy of commercial decontamination products following exposure to VX on human skin. Chemico-Biological Interactions 273: 82-89, 2017

Effect of reactive skin decontamination lotion on skin wound healing in laboratory rats. Military Medicine 172(3): 318-321, 2007

Chemical stability of reactive skin decontamination lotion (RSDL ® ). Toxicology Letters 293: 264-268, 2018

Comparative efficacy of Reactive Skin Decontamination Lotion (RSDL): a systematic review. Toxicology Letters 349: 109-114, 2021

In vivo efficacy of the Reactive Skin Decontamination Lotion (RSDL®) kit against organophosphate and carbamate pesticides. Chemico-BiologicalInteractions318:108980, 2020

Development of haemostatic decontaminants for treatment of wounds contaminated with chemical warfare agents. 3: Evaluation of in vitro topical decontamination efficacy using damaged skin. Journal of Applied Toxicology: Jat 37(8): 976-984, 2017

Development of haemostatic decontaminants for the treatment of wounds contaminated with chemical warfare agents. 2: evaluation of in vitro topical decontamination efficacy using undamaged skin. Journal of Applied Toxicology: Jat 35(5): 543-550, 2015

Cutaneous challenge with chemical warfare agents in the SKH-1 hairless mouse. (I) Development of a model for screening studies in skin decontamination and protection. Human and Experimental Toxicology 30(6): 470-490, 2011