+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Exploring the molecular basis of dsRNA recognition by Mss116p using molecular dynamics simulations and free-energy calculations



Exploring the molecular basis of dsRNA recognition by Mss116p using molecular dynamics simulations and free-energy calculations



Langmuir 29(35): 11135-11144



DEAD-box proteins are the largest family of helicase that are important in nearly all aspects of RNA metabolism. However, it is unclear how these proteins recognize and bind RNA. Here, we present a detailed analysis of the related DEAD-box protein Mss116p-RNA interaction, using molecular dynamics simulations with MM-GBSA calculations. The energetic analysis indicates that the two strands of double strands RNA (dsRNA) are recognized asymmetrically by Mss116p. The strand 1 of dsRNA provides the main binding affinity. Meanwhile, the nonpolar interaction provides the main driving force for the binding process. Although the contribution of polar interaction is small, it is vital in stabilizing the protein-RNA interaction. Compared with the wild type Mss116p, two studied mutants Q412A and D441A have obviously reduced binding free energies with dsRNA because of the decreasing of polar interaction. Three important residues Lys409, Arg415 and Arg438 lose their binding affinity significantly in mutants. In conclusion, these results complement previous experiments to advance comprehensive understanding of Mss116p-dsRNA interaction. The results also would provide support for the application of similar approaches to the understanding of other DEAD-box protein-RNA complexes.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 053142156

Download citation: RISBibTeXText

PMID: 23895307

DOI: 10.1021/la402354r


Related references

Exploring the molecular basis of dsRNA recognition by NS1 protein of influenza A virus using molecular dynamics simulation and free energy calculation. Antiviral Research 92(3): 424-433, 2011

Exploring the mechanism how Marburg virus VP35 recognizes and binds dsRNA by molecular dynamics simulations and free energy calculations. Biopolymers 101(8): 849-860, 2014

Molecular dynamics simulations and free energy calculations of base flipping in dsRNA. Rna 11(5): 609-618, 2005

Exploring the inter-molecular interactions in amyloid-β protofibril with molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area free energy calculations. Journal of Chemical Physics 136(14): 145101, 2012

Exploring the molecular design of protein interaction sites with molecular dynamics simulations and free energy calculations. Biochemistry 48(2): 399-414, 2009

Molecular recognition in a diverse set of protein-ligand interactions studied with molecular dynamics simulations and end-point free energy calculations. Journal of Chemical Information and Modeling 53(10): 2659-2670, 2013

Exploring the mechanism how AF9 recognizes and binds H3K9ac by molecular dynamics simulations and free energy calculations. Biopolymers 105(11): 779-786, 2016

Exploring the mechanism of how tvMyb2 recognizes and binds ap65-1 by molecular dynamics simulations and free energy calculations. Molecular Biosystems 12(1): 76-84, 2016

Exploring the Interaction Mechanism Between Cyclopeptide DC3 and Androgen Receptor Using Molecular Dynamics Simulations and Free Energy Calculations. Frontiers in Chemistry 6: 119, 2018

Exploring the proton conductance and drug resistance of BM2 channel through molecular dynamics simulations and free energy calculations at different pH conditions. Journal of Physical Chemistry. B 117(4): 982-988, 2013

Exploring resistance mechanisms of HCV NS3/4A protease mutations to MK5172: insight from molecular dynamics simulations and free energy calculations. Molecular Biosystems 11(9): 2568-2578, 2015

Exploring binding modes of the selected inhibitors to phosphodiesterase delta by all-atom molecular dynamics simulations and free energy calculations. Journal of Biomolecular Structure and Dynamics 37(9): 2415-2429, 2019

Exploring PHD fingers and H3K4me0 interactions with molecular dynamics simulations and binding free energy calculations: AIRE-PHD1, a comparative study. Plos one 7(10): E46902, 2012

The molecular basis for the inhibition of phosphodiesterase-4D by three natural resveratrol analogs. Isolation, molecular docking, molecular dynamics simulations, binding free energy, and bioassay. Biochimica et Biophysica Acta 1834(10): 2089-2096, 2013

Decoding molecular mechanism of inhibitor bindings to CDK2 using molecular dynamics simulations and binding free energy calculations. Journal of Biomolecular Structure and Dynamics 2019: 1-12, 2019