+ Site Statistics
References:
54,258,434
Abstracts:
29,560,870
PMIDs:
28,072,757
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Functional role of vanilloid transient receptor potential 4-canonical transient receptor potential 1 complex in flow-induced Ca2+ influx



Functional role of vanilloid transient receptor potential 4-canonical transient receptor potential 1 complex in flow-induced Ca2+ influx



Arteriosclerosis, Thrombosis, and Vascular Biology 30(4): 851-858



The present study is aimed at investigating the interaction of TRPV4 with TRPC1 and the functional role of such an interaction in flow-induced Ca(2+) influx. Hemodynamic blood flow is an important physiological factor that modulates vascular tone. One critical early event in this process is a cytosolic Ca(2+) ([Ca(2+)](i)) rise in endothelial cells in response to flow. With the use of fluorescence resonance energy transfer, coimmunoprecipitation, and subcellular colocalization methods, it was found that TRPC1 interacts physically with TRPV4 to form a complex. In functional studies, flow elicited a transient [Ca(2+)](i) increase in TRPV4-expressing human embryonic kidney (HEK) 293 cells. Coexpression of TRPC1 with TRPV4 markedly prolonged this [Ca(2+)](i) transient; it also enabled this [Ca(2+)](i) transient to be negatively modulated by protein kinase G. Furthermore, this flow-induced [Ca(2+)](i) increase was markedly inhibited by anti-TRPC1-blocking antibody T1E3 and a dominant-negative construct TRPC1 Delta 567-793 in TRPV4-C1-coexpressing HEK cells and human umbilical vein endothelial cells. T1E3 also inhibited flow-induced vascular dilation in isolated rat small mesenteric artery segments. This study shows that TRPC1 interacts physically with TRPV4 to form a complex, and this TRPV4-C1 complex may mediate flow-induced Ca(2+) influx in vascular endothelial cells. The association of TRPC1 with TRPV4 prolongs the flow-induced [Ca(2+)](i) transient, and it also enables this [Ca(2+)](i) transient to be negatively modulated by protein kinase G. This TRPV4-C1 complex plays a key role in flow-induced endothelial Ca(2+) influx.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 053329152

Download citation: RISBibTeXText

PMID: 20093626

DOI: 10.1161/atvbaha.109.196584


Related references

Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience 193: 440-451, 2012

Functional role of canonical transient receptor potential 1 and canonical transient receptor potential 3 in normal and asthmatic airway smooth muscle cells. American Journal of Respiratory Cell and Molecular Biology 43(1): 17-25, 2010

A distinct role for transient receptor potential ankyrin 1, in addition to transient receptor potential vanilloid 1, in tumor necrosis factor α-induced inflammatory hyperalgesia and Freund's complete adjuvant-induced monarthritis. Arthritis and Rheumatism 63(3): 819-829, 2013

Functional transient receptor potential vanilloid 1 and transient receptor potential vanilloid 4 channels along different segments of the renal vasculature. Acta Physiologica 213(2): 481-491, 2015

Canonical transient receptor potential (TRPC) 1 acts as a negative regulator for vanilloid TRPV6-mediated Ca2+ influx. Journal of Biological Chemistry 287(42): 35612-35620, 2013

Superoxide generation and leukocyte accumulation: key elements in the mediation of leukotriene B₄-induced itch by transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1. Faseb Journal 27(4): 1664-1673, 2013

Transient receptor potential vanilloid 1 and transient receptor potential ankyrin 1 contribute to the progression of colonic inflammation in dextran sulfate sodium-induced colitis in mice: Links to calcitonin gene-related peptide and substance P. Journal of Pharmacological Sciences 136(3): 121-132, 2018

Bimodal concentration-response of nicotine involves the nicotinic acetylcholine receptor, transient receptor potential vanilloid type 1, and transient receptor potential ankyrin 1 channels in mouse trachea and sensory neurons. Journal of Pharmacology and Experimental Therapeutics 347(2): 529-539, 2013

Transient receptor potential melastatin 8 channel inhibition potentiates the hypothermic response to transient receptor potential vanilloid 1 activation in the conscious mouse. Critical Care Medicine 42(5): E355-E363, 2014

Local upregulation of transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 ion channels in rectosigmoid deep infiltrating endometriosis. Molecular Pain 13: 1744806917705564, 2018

Propofol restores transient receptor potential vanilloid receptor subtype-1 sensitivity via activation of transient receptor potential ankyrin receptor subtype-1 in sensory neurons. Anesthesiology 114(5): 1169-1179, 2011

Characterization of Transient Receptor Potential Vanilloid-1 (TRPV1) Variant Activation by Coal Fly Ash Particles and Associations with Altered Transient Receptor Potential Ankyrin-1 (TRPA1) Expression and Asthma. Journal of Biological Chemistry 291(48): 24866-24879, 2016

Cannabinoid 1 receptor activation inhibits transient receptor potential vanilloid type 1 receptor-mediated cationic influx into rat cultured primary sensory neurons. Neuroscience 162(4): 1202-1211, 2009

Locomotor networks are targets of modulation by sensory transient receptor potential vanilloid 1 and transient receptor potential melastatin 8 channels. Neuroscience 162(4): 1377-1397, 2009

CB(1) cannabinoid receptor stimulation modulates transient receptor potential vanilloid receptor 1 activities in calcium influx and substance P Release in cultured rat dorsal root ganglion cells. Journal of Pharmacological Sciences 97(3): 377-385, 2005