EurekaMag PDF full texts Chapter 53,560
References:
Chatterjee, J.; Ovadia, O.; Zahn, G.; Marinelli, L.; Hoffman, A.; Gilon, C.; Kessler, H. 2009: Highly selective cyclic hexapeptides antagonist of GPIIb-IIIa by multiple N-methylation. Advances in Experimental Medicine and Biology 611: 209-210
Kwon, N.Y.; Kim, D.; Jang, G.; Lee, J.H.; So, J.-H.; Kim, C.-H.; Kim, T.H.; Lee, T.S. 2012: Highly selective cysteine detection and bioimaging in zebrafish through emission color change of water-soluble conjugated polymer-based assay complex. Acs Applied Materials and Interfaces 4(3): 1429-1433
Geilen, F.M.A.; vom Stein, T.; Engendahl, B.; Winterle, S.; Liauw, M.A.; Klankermayer, J.ür.; Leitner, W. 2011: Highly selective decarbonylation of 5-(hydroxymethyl)furfural in the presence of compressed carbon dioxide. Angewandte Chemie 50(30): 6831-6834
Jiang, D.; Wang, W.; Gao, E.; Sun, S.; Zhang, L. 2014: Highly selective defect-mediated photochemical CO2 conversion over fluorite ceria under ambient conditions. Chemical Communications 50(16): 2005-2007
Jiang, Y.; Blacque, O.; Fox, T.; Frech, C.M.; Berke, H. 2009: Highly selective dehydrogenative silylation of alkenes catalyzed by rhenium complexes. Chemistry 15(9): 2121-2128
Ogino, M.; Taya, Y.; Fujimoto, K. 2008: Highly selective detection of 5-methylcytosine using photochemical ligation. Chemical Communications 45: 5996-5998
Lee, S.; Choi, I.; Hong, S.; In Yang, Y.; Lee, J.; Kang, T.; Yi, J. 2009: Highly selective detection of Cu2+ utilizing specific binding between Cu-demetallated superoxide dismutase 1 and the Cu2+ ion via surface plasmon resonance spectroscopy. Chemical Communications 41: 6171-6173
Valentini, F.; Ciambella, E.; Conte, V.; Sabatini, L.; Ditaranto, N.; Cataldo, F.; Palleschi, G.; Bonchio, M.; Giacalone, F.; Syrgiannis, Z.; Prato, M. 2014: Highly selective detection of Epinephrine at oxidized Single-Wall Carbon Nanohorns modified Screen Printed Electrodes (SPEs). Biosensors and Bioelectronics 59: 94-98
Zhang, P.; Wang, Y.; Chang, Y.; Xiong, Z.Hong.; Huang, C.Zhi. 2013: Highly selective detection of bacterial alarmone pp Gpp with an off-on fluorescent probe of copper-mediated silver nanoclusters. Biosensors and Bioelectronics 49: 433-437
Liu, J.; Bao, C.; Zhong, X.; Zhao, C.; Zhu, L. 2010: Highly selective detection of glutathione using a quantum-dot-based OFF-ON fluorescent probe. Chemical Communications 46(17): 2971-2973
Huang, C-Chi.; Tseng, W-Lung. 2009: Highly selective detection of histidine using o-phthaldialdehyde derivatization after the removal of aminothiols through Tween 20-capped gold nanoparticles. Analyst 134(8): 1699-1705
Cheng, Y.; Lei, J.; Chen, Y.; Ju, H. 2014: Highly selective detection of microRNA based on distance-dependent electrochemiluminescence resonance energy transfer between CdTe nanocrystals and au nanoclusters. Biosensors and Bioelectronics 51: 431-436
Barba-Bon, A.; Costero, A.M.; Gil, S.; Harriman, A.; Sancenón, F.él. 2014: Highly selective detection of nerve-agent simulants with BODIPY dyes. Chemistry 20(21): 6339-6347
Nagarkar, S.S.; Joarder, B.; Chaudhari, A.K.; Mukherjee, S.; Ghosh, S.K. 2013: Highly selective detection of nitro explosives by a luminescent metal-organic framework. Angewandte Chemie 52(10): 2881-2885
Krupadam, R.J.; Nesterov, E.E.; Spivak, D.A. 2014: Highly selective detection of oil spill polycyclic aromatic hydrocarbons using molecularly imprinted polymers for marine ecosystems. Journal of Hazardous Materials 274: 1-7
Zhao, H.X.; Liu, L.Q.; Liu, Z.D.; Wang, Y.; Zhao, X.J.; Huang, C.Z. 2011: Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots. Chemical Communications 47(9): 2604-2606
Li, H.; Wang, L. 2013: Highly selective detection of polycyclic aromatic hydrocarbons using multifunctional magnetic-luminescent molecularly imprinted polymers. Acs Applied Materials and Interfaces 5(21): 10502-10509
Lai, C-Ze.; Fierke, M.A.; Corrêa da Costa, R.; Gladysz, J.A.; Stein, A.; Bühlmann, P. 2010: Highly selective detection of silver in the low ppt range with ion-selective electrodes based on ionophore-doped fluorous membranes. Analytical chemistry 82(18): 7634-7640
Wang, D.; Tang, W.; Wu, X.; Wang, X.; Chen, G.; Chen, Q.; Li, N.; Liu, F. 2012: Highly selective detection of single-nucleotide polymorphisms using a quartz crystal microbalance biosensor based on the toehold-mediated strand displacement reaction. Analytical Chemistry 84(16): 7008-7014
Dinda, D.; Gupta, A.; Shaw, B.K.; Sadhu, S.; Saha, S.K. 2014: Highly selective detection of trinitrophenol by luminescent functionalized reduced graphene oxide through FRET mechanism. Acs Applied Materials and Interfaces 6(13): 10722-10728
Nakayama, S.; Notoya, T.; Osakai, T. 2012: Highly selective determination of copper corrosion products by voltammetric reduction in a strongly alkaline electrolyte. Analytical Sciences: the International Journal of the Japan Society for Analytical Chemistry 28(4): 323-331
Rodríguez, M.C.; Rubianes, M.ía.D.; Rivas, G.A. 2008: Highly selective determination of dopamine in the presence of ascorbic acid and serotonin at glassy carbon electrodes modified with carbon nanotubes dispersed in polyethylenimine. Journal of Nanoscience and Nanotechnology 8(11): 6003-6009
Liu, Y.; Zai, Y.; Chang, X.; Guo, Y.; Meng, S.; Feng, F. 2006: Highly selective determination of methylmercury with methylmercury-imprinted polymers. Analytica Chimica Acta 575(2): 159-165
Yu, J.; Ge, L.; Dai, P.; Zhang, C.; Ge, S.; Huang, J. 2009: Highly selective determination of phenolphthalein by flow injection chemiluminescence method based on a molecular imprinting polymer. Luminescence: the Journal of Biological and Chemical Luminescence 24(6): 444-447
Ötvös, S.án.B.; Mándity, I.án.M.; Fülöp, F. 2011: Highly selective deuteration of pharmaceutically relevant nitrogen-containing heterocycles: a flow chemistry approach. Molecular Diversity 15(3): 605-611
Ensafi, A.A.; Arashpour, B.; Rezaei, B.; Allafchian, A.R. 2013: Highly selective differential pulse voltammetric determination of phenazopyridine using MgCr2O4 nanoparticles decorated MWCNTs-modified glassy carbon electrode. Colloids and Surfaces. B Biointerfaces 111: 270-276
Behr, A.; Rentmeister, N.; Seidensticker, T.; Vosberg, J.; Peitz, S.; Maschmeyer, D. 2014: Highly selective dimerization and trimerization of isobutene to linearly linked products by using nickel catalysts. Chemistry An Asian Journal 9(2): 596-601
Kondo, T.; Takagi, D.; Tsujita, H.; Ura, Y.; Wada, K.; Mitsudo, T.-a. 2007: Highly selective dimerization of styrenes and linear co-dimerization of styrenes with ethylene catalyzed by a ruthenium complex. Angewandte Chemie 46(31): 5958-5961
Keske, E.C.; Moore, B.D.; Zenkina, O.V.; Wang, R.; Schatte, G.; Crudden, C.M. 2014: Highly selective directed arylation reactions via back-to-back dehydrogenative C-H borylation/arylation reactions. Chemical Communications 50(69): 9883-9886
Chen, Y.; Xu, Y.; Wang, Q.; Gunasinghe, R.N.; Wang, X.-Q.; Pang, Y. 2013: Highly selective dispersion of carbon nanotubes by using poly(phenyleneethynylene)-guided supermolecular assembly. Small 9(6): 870-875
Jiang, B.; Wang, X.; Xu, H.-W.; Tu, M.-S.; Tu, S.-J.; Li, G. 2013: Highly selective domino multicyclizations for forming polycyclic fused acridines and azaheterocyclic skeletons. Organic Letters 15(7): 1540-1543
Ku, S.; Palanisamy, S.; Chen, S.-M. 2013: Highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite and nafion composite modified screen printed carbon electrode. Journal of Colloid and Interface Science 411: 182-186
Gupta, S.; Chen, R.; Huang, Y.-C.; Kim, Y.; Sanchez, E.; Harris, J.S.; Saraswat, K.C. 2013: Highly selective dry etching of germanium over germanium-tin (Ge(1-x)Sn(x)): a novel route for Ge(1-x)Sn(x) nanostructure fabrication. Nano Letters 13(8): 3783-3790
Sun, X.; Wang, J.; Li, Y.; Jin, J.; Zhang, B.; Shah, S.M.; Wang, X.; Chen, J. 2014: Highly selective dummy molecularly imprinted polymer as a solid-phase extraction sorbent for five bisphenols in tap and river water. Journal of Chromatography. a 1343: 33-41
Bonitatibus, P.J.; Rainka, M.P.; Peters, A.J.; Simone, D.L.; Doherty, M.D. 2013: Highly selective electrocatalytic dehydrogenation at low applied potential catalyzed by an Ir organometallic complex. Chemical Communications 49(90): 10581-10583
Mirmoghtadaie, L.; Ensafi, A.A.; Kadivar, M.; Norouzi, P. 2013: Highly selective electrochemical biosensor for the determination of folic acid based on DNA modified-pencil graphite electrode using response surface methodology. Materials Science and Engineering. C Materials for Biological Applications 33(3): 1753-1758
Shao, X.; Gu, H.; Wang, Z.; Chai, X.; Tian, Y.; Shi, G. 2013: Highly selective electrochemical strategy for monitoring of cerebral Cu2+ based on a carbon Dot-TPEA hybridized surface. Analytical Chemistry 85(1): 418-425
Yang, X.; Jin, Y.; Chen, H.; Li, S.; Ma, G.; Hu, X.; Qiu, Y.; Yu, W.; Chang, L.; Wang, T.; Lin, X. 2014: Highly selective electrocoagulation therapy: an innovative treatment for lymphangioma circumscriptum. Dermatologic Surgery: Official Publication for American Society for Dermatologic Surgery 40(8): 899-905
Kirste, A.; Hayashi, S.; Schnakenburg, G.; Malkowsky, I.M.; Stecker, F.; Fischer, A.; Fuchigami, T.; Waldvogel, S.R. 2011: Highly selective electrosynthesis of biphenols on graphite electrodes in fluorinated media. Chemistry 17(50): 14164-14169
Malmsten, M.; Kasetty, G.; Pasupuleti, M.; Alenfall, J.; Schmidtchen, A. 2011: Highly selective end-tagged antimicrobial peptides derived from PRELP. Plos one 6(1): E16400
Sun, N.; Deng, C.; Li, Y.; Zhang, X. 2014: Highly selective enrichment of N-linked glycan by carbon-functionalized ordered graphene/mesoporous silica composites. Analytical Chemistry 86(4): 2246-2250
Ma, R.; Hu, J.; Cai, Z.; Ju, H. 2014: Highly selective enrichment of phosphopeptides with high-index facets exposed octahedral tin dioxide nanoparticles for mass spectrometric analysis. Talanta 119: 452-457
Wang, Z.; Lei, H.; Zhou, C.; Wang, G.; Feng, L. 2012: Highly selective ensembles for D-fructose based on fluorescent method in aqueous solution. Spectrochimica Acta. Part a Molecular and Biomolecular Spectroscopy 91: 178-183
Nechab, M.; Azzi, N.; Vanthuyne, N.; Bertrand, M.èl.; Gastaldi, S.ép.; Gil, G.ér. 2007: Highly selective enzymatic kinetic resolution of primary amines at 80 degrees C: a comparative study of carboxylic acids and their ethyl esters as acyl donors. Journal of Organic Chemistry 72(18): 6918-6923
Lee, S.J.; Jung, C.Y.; Park, S.J.; Hwangbo, C.K.; Seo, H.S.; Kim, S.S.; Lee, N.-E. 2012: Highly selective etching of SnO2 absorber in binary mask structure for extreme ultra-violet lithography. Journal of Nanoscience and Nanotechnology 12(4): 3334-3340
Sorin, W.V.; Kim, B.Y.; Shaw, H.J. 1986: Highly selective evanescent modal filter for two-mode optical fibers. Optics Letters 11(9): 581-583
Murale, D.P.; Kim, H.; Choi, W.S.; Churchill, D.G. 2013: Highly selective excited state intramolecular proton transfer (ESIPT)-based superoxide probing. Organic Letters 15(15): 3946-3949
Wu, J.; Hou, H.; Han, H.; Fan, Y. 2007: Highly selective ferric ion sorption and exchange by crystalline metal phosphonates constructed from tetraphosphonic acids. Inorganic Chemistry 46(19): 7960-7970
Themelis, D.G.; Trellopoulos, A.V.; Tzanavaras, P.D.; Sofoniou, M. 2007: Highly selective flow injection spectrophotometric determination of gold based on its catalytic effect on the oxidation of variamine blue by potassium iodate in aqueous N,N-dimethylformamide medium. Talanta 72(1): 277-281
Khatua, S.; Choi, S.H.; Lee, J.; Huh, J.O.; Do, Y.; Churchill, D.G. 2009: Highly selective fluorescence detection of Cu2+ in water by chiral dimeric Zn2+ complexes through direct displacement. Inorganic Chemistry 48(5): 1799-1801
Zhang, D.; Chen, W.; Kang, J.; Ye, Y.; Zhao, Y.; Xian, M. 2014: Highly selective fluorescence off-on probes for biothiols and imaging in live cells. Organic and Biomolecular Chemistry 12(35): 6837-6841
Kumar, M.; Kumar, N.; Bhalla, V.; Sharma, P.R.; Kaur, T. 2012: Highly selective fluorescence turn-on chemodosimeter based on rhodamine for nanomolar detection of copper ions. Organic Letters 14(1): 406-409
Chen, Z.; Wang, L.; Zou, G.; Tang, J.; Cai, X.; Teng, M.; Chen, L. 2013: Highly selective fluorescence turn-on chemosensor based on naphthalimide derivatives for detection of copper(II) ions. Spectrochimica Acta. Part a Molecular and Biomolecular Spectroscopy 105: 57-61
Park, J.; Choi, S.; Kim, T-Il.; Kim, Y. 2012: Highly selective fluorescence turn-on sensing of gold ions by a nanoparticle generation/C-I bond cleavage sequence. Analyst 137(19): 4411-4414
Sui, B.; Kim, B.; Zhang, Y.; Frazer, A.; Belfield, K.D. 2013: Highly selective fluorescence turn-on sensor for fluoride detection. Acs Applied Materials and Interfaces 5(8): 2920-2923
Guo, H.; Jing, Y.; Yuan, X.; Ji, S.; Zhao, J.; Li, X.; Kan, Y. 2011: Highly selective fluorescent OFF-ON thiol probes based on dyads of BODIPY and potent intramolecular electron sink 2,4-dinitrobenzenesulfonyl subunits. Organic and Biomolecular Chemistry 9(10): 3844-3853
Wang, Y.; Peng, X.; Shi, J.; Tang, X.; Jiang, J.; Liu, W. 2012: Highly selective fluorescent chemosensor for Zn2+ derived from inorganic-organic hybrid magnetic core/shell Fe3O4@SiO2 nanoparticles. Nanoscale Research Letters 7(1): 86
Jou, M.J.; Chen, X.; Swamy, K.M.K.; Kim, H.N.; Kim, H.-J.; Lee, S.-g.; Yoon, J. 2009: Highly selective fluorescent probe for Au3+ based on cyclization of propargylamide. Chemical Communications 46: 7218-7220
Huang, C.; Yin, Q.; Zhu, W.; Yang, Y.; Wang, X.; Qian, X.; Xu, Y. 2011: Highly selective fluorescent probe for vicinal-dithiol-containing proteins and in situ imaging in living cells. Angewandte Chemie 50(33): 7551-7556
Azadbakht, R.; Parviz, M.; Tamari, E.; Keypour, H.; Golbedaghi, R. 2011: Highly selective fluorescent recognition of Zn2+ based on naphthalene macrocyclic derivative. Spectrochimica Acta. Part a Molecular and Biomolecular Spectroscopy 82(1): 200-204
Du, J.; Huang, Z.; Yu, X.-Q.; Pu, L. 2013: Highly selective fluorescent recognition of histidine by a crown ether-terpyridine-Zn(II) sensor. Chemical Communications 49(47): 5399-5401
Tang, L.; Liu, M.; Li, F.; Nandhakumar, R. 2011: Highly selective fluorescent recognition of pyrophosphate in water by a new chemosensing ensemble. Journal of Fluorescence 21(2): 701-705
Zhou, H.; Zhao, Y.; Gao, G.; Li, S.; Lan, J.; You, J. 2013: Highly selective fluorescent recognition of sulfate in water by two rigid tetrakisimidazolium macrocycles with peripheral chains. Journal of the American Chemical Society 135(40): 14908-14911
Shi, B.; Zhang, P.; Wei, T.; Yao, H.; Lin, Q.; Zhang, Y. 2013: Highly selective fluorescent sensing for CN- in water: utilization of the supramolecular self-assembly. Chemical Communications 49(71): 7812-7814
Kanagaraj, K.; Affrose, A.; Sivakolunthu, S.; Pitchumani, K. 2012: Highly selective fluorescent sensing of fenitrothion using per-6-amino-β-cyclodextrin:Eu(III) complex. Biosensors and Bioelectronics 35(1): 452-455
Deng, Q.; Wu, J.; Zhai, X.; Fang, G.; Wang, S. 2013: Highly selective fluorescent sensing of proteins based on a fluorescent molecularly imprinted nanosensor. Sensors 13(10): 12994-13004
Hu, D.; Sheng, Z.; Gong, P.; Zhang, P.; Cai, L. 2010: Highly selective fluorescent sensors for Hg(2+) based on bovine serum albumin-capped gold nanoclusters. Analyst 135(6): 1411-1416
Wang, X.; Hu, J.; Zhang, G.; Liu, S. 2014: Highly selective fluorogenic multianalyte biosensors constructed via enzyme-catalyzed coupling and aggregation-induced emission. Journal of the American Chemical Society 136(28): 9890-9893
Towata, T.; Komizu, Y.; Suzu, S.; Ueoka, R.; Okada, S. 2010: Highly selective fusion and accumulation of hybrid liposomes into primary effusion lymphoma cells along with induction of apoptosis. Biochemical and Biophysical Research Communications 393(3): 445-448
Lipatov, A.; Varezhnikov, A.; Wilson, P.; Sysoev, V.; Kolmakov, A.; Sinitskii, A. 2013: Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale 5(12): 5426-5434
Min, Q.-Q.; Yin, Z.; Feng, Z.; Guo, W.-H.; Zhang, X. 2014: Highly selective gem-difluoroallylation of organoborons with bromodifluoromethylated alkenes catalyzed by palladium. Journal of the American Chemical Society 136(4): 1230-1233
Bini, L.; Müller, C.; Wilting, J.; von Chrzanowski, L.; Spek, A.L.; Vogt, D. 2007: Highly selective hydrocyanation of butadiene toward 3-pentenenitrile. Journal of the American Chemical Society 129(42): 12622-12623
Wang, Y.; Yao, J.; Li, H.; Su, D.; Antonietti, M. 2011: Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. Journal of the American Chemical Society 133(8): 2362-2365
Arundhathi, R.; Mizugaki, T.; Mitsudome, T.; Jitsukawa, K.; Kaneda, K. 2013: Highly selective hydrogenolysis of glycerol to 1,3-propanediol over a boehmite-supported platinum/tungsten catalyst. Chemsuschem 6(8): 1345-1347
Kawaguchi, S.-i.; Ogawa, A. 2010: Highly selective hydroiodation of alkynes using an iodine-hydrophosphine binary system. Organic Letters 12(9): 1893-1895
Shin, K.-C.; Seo, M.-J.; Oh, H.-J.; Oh, D.-K. 2014: Highly selective hydrolysis for the outer glucose at the C-20 position in ginsenosides by β-glucosidase from Thermus thermophilus and its application to the production of ginsenoside F2 from gypenoside XVIi. Biotechnology Letters 36(6): 1287-1293
Chajkowski, S.M.; Mallela, J.; Watson, D.E.; Wang, J.; McCurdy, C.R.; Rimoldi, J.M.; Shariat-Madar, Z. 2011: Highly selective hydrolysis of kinins by recombinant prolylcarboxypeptidase. Biochemical and Biophysical Research Communications 405(3): 338-343
Visvaganesan, K.; Suresh, E.; Palaniandavar, M. 2009: Highly selective hydroxylation of alkanes catalyzed by (micro-oxo)bis(micro-carboxylato)-bridged diiron(III) complexes: involvement of mononuclear iron(III) species in catalysis. Dalton Transactions 19: 3814-3823
Shoji, O.; Kunimatsu, T.; Kawakami, N.; Watanabe, Y. 2013: Highly selective hydroxylation of benzene to phenol by wild-type cytochrome P450BM3 assisted by decoy molecules. Angewandte Chemie 52(26): 6606-6610
Onses, M.Serdar.; Liu, C-Chun.; Thode, C.J.; Nealey, P.F. 2012: Highly selective immobilization of Au nanoparticles onto isolated and dense nanopatterns of poly(2-vinyl pyridine) brushes down to single-particle resolution. Langmuir: the Acs Journal of Surfaces and Colloids 28(18): 7299-7307
Li, M.; Li, D.-W.; Li, Y.-T.; Xu, D.-K.; Long, Y.-T. 2011: Highly selective in situ metal ion determination by hybrid electrochemical "adsorption-desorption" and colorimetric methods. Analytica Chimica Acta 701(2): 157-163
Kim, J.-Y.; Choi, W.I.; Kim, Y.H.; Tae, G. 2011: Highly selective in-vivo imaging of tumor as an inflammation site by ROS detection using hydrocyanine-conjugated, functional nano-carriers. Journal of Controlled Release: Official Journal of the Controlled Release Society 156(3): 398-405
Behr, J.-B.; Hottin, A.; Ndoye, A. 2012: Highly selective indium mediated allylation of unprotected pentosylamines. Organic Letters 14(6): 1536-1539
Zawadzka, A.; Lozińska, I.; Molęda, Z.; Panasiewicz, M.ła.; Czarnocki, Z. 2013: Highly selective inhibition of butyrylcholinesterase by a novel melatonin-tacrine heterodimers. Journal of Pineal Research 54(4): 435-441
Chang, J.W.; Niphakis, M.J.; Lum, K.M.; Cognetta, A.B.; Wang, C.; Matthews, M.L.; Niessen, S.; Buczynski, M.W.; Parsons, L.H.; Cravatt, B.F. 2012: Highly selective inhibitors of monoacylglycerol lipase bearing a reactive group that is bioisosteric with endocannabinoid substrates. Chemistry and Biology 19(5): 579-588
Laczkowski, K.Z.; García, D.; Peña, D.; Cobas, A.ín.; Pérez, D.; Guitián, E. 2011: Highly selective insertion of arynes into a C(sp)-O(sp3) σ bond. Organic Letters 13(5): 960-963
Lo, V.K.-Y.; Guo, Z.; Choi, M.K.-W.; Yu, W.-Y.; Huang, J.-S.; Che, C.-M. 2012: Highly selective intramolecular carbene insertion into primary C-H bond of α-diazoacetamides mediated by a (p-cymene)ruthenium(II) carboxylate complex. Journal of the American Chemical Society 134(18): 7588-7591
Juszczak, M.T.; Kooner, P.; Pawelec, K.; Jones, G.L.; Hughes, S.J.; Kumar, A.; Powis, S.H.; Press, M. 2009: Highly selective intraportal transplantation of pancreatic islets. Journal of Surgical Research 157(2): 216-222
Hau, F.K.-W.; He, X.; Lam, W.H.; Yam, V.W.-W. 2011: Highly selective ion probe for Al3+ based on Au(I)···Au(I) interactions in a bis-alkynyl calix[4]arene Au(I) isocyanide scaffold. Chemical Communications 47(31): 8778-8780
Enthaler, S.; Haberberger, M.; Irran, E. 2011: Highly selective iron-catalyzed synthesis of alkenes by the reduction of alkynes. Chemistry An Asian Journal 6(6): 1613-1623
Liu, Y.; Li, Y.; Wei, Y. 2014: Highly selective isolation and purification of heme proteins in biological samples using multifunctional magnetic nanospheres. Journal of Separation Science 37(24): 3745-3752
Aurand, C.R.; Bell, D.S.; Wright, M. 2012: Highly selective isolation and separation of 25-hydroxyvitamin D and 3-epi-25-hydroxyvitamin D metabolites from serum. Bioanalysis 4(22): 2681-2691
Hagiwara, K.; Ochi, H.; Suzuki, S.; Shimizu, Y.; Tokuda, T.; Murai, H.; Shigeto, H.; Ohyagi, Y.; Iwata, M.; Iwaki, T.; Kira, J.-I. 2009: Highly selective leptomeningeal amyloidosis with transthyretin variant Ala25Thr. Neurology 72(15): 1358-1360
Quintas, P.O.; Catarino, T.; Todorovic, S.; Turner, D.L. 2011: Highly selective ligand binding by Methylophilus methylotrophus cytochrome c''. Biochemistry 50(25): 5624-5632
Wu, T.; Liu, C.; Tan, K.Jun.; Hu, P.Ping.; Huang, C.Zhi. 2010: Highly selective light scattering imaging of chromium (III) in living cells with silver nanoparticles. Analytical and Bioanalytical Chemistry 397(3): 1273-1279
Lee, J.; Yu, S-Ho.; Kim, C.; Sung, Y-Eun.; Yoon, J. 2013: Highly selective lithium recovery from brine using a λ-MnO2-Ag battery. Physical Chemistry Chemical Physics: Pccp 15(20): 7690-7695
Zhou, J.-M.; Shi, W.; Xu, N.; Cheng, P. 2013: Highly selective luminescent sensing of fluoride and organic small-molecule pollutants based on novel lanthanide metal-organic frameworks. Inorganic Chemistry 52(14): 8082-8090
Jee, J.-E.; Cheong, J.L.; Lim, J.; Chen, C.; Hong, S.H.; Lee, S.S. 2013: Highly selective macrocycle formations by metathesis catalysts fixated in nanopores. Journal of Organic Chemistry 78(7): 3048-3056
Alfonso, M.ía.; Contreras-García, J.; Espinosa, A.; Tárraga, A.; Molina, P. 2012: Highly selective mercury(II) cations detection in mixed-aqueous media by a ferrocene-based fluorescent receptor. Dalton Transactions 41(15): 4437-4444
Thu, H.-Y.; Tong, G.S.-M.; Huang, J.-S.; Chan, S.L.-F.; Deng, Q.-H.; Che, C.-M. 2008: Highly selective metal catalysts for intermolecular carbenoid insertion into primary C-H bonds and enantioselective C-C bond formation. Angewandte Chemie 47(50): 9747-9751
Vecchio, V.M.; Benedetti, M.; Migoni, D.; De Pascali, S.A.; Ciccarese, A.; Marsigliante, S.; Capitelli, F.; Fanizzi, F.P. 2007: Highly selective metal mediated ortho-alkylation of phenol. first platinum containing organometallic chromane analogues. Dalton Transactions 48: 5720-5725
Jaric, M.; Haag, B.A.; Unsinn, A.; Karaghiosoff, K.; Knochel, P. 2010: Highly selective metalations of pyridines and related heterocycles using new frustrated Lewis pairs or tmp-zinc and tmp-magnesium bases with BF3.OEt2. Angewandte Chemie 49(32): 5451-5455
Jang, H.; Zhugralin, A.R.; Lee, Y.; Hoveyda, A.H. 2011: Highly selective methods for synthesis of internal (α-) vinylboronates through efficient NHC-Cu-catalyzed hydroboration of terminal alkynes. Utility in chemical synthesis and mechanistic basis for selectivity. Journal of the American Chemical Society 133(20): 7859-7871
Hou, J-G.; Xue, J-J.; Sun, M-Q.; Wang, C-Y.; Liu, L.; Zhang, D-L.; Lee, M-R.; Gu, L-J.; Wang, C-L.; Wang, Y-B.; Zheng, Y.; Li, W.; Sung, C-K. 2012: Highly selective microbial transformation of major ginsenoside Rb1 to gypenoside LXXV by Esteya vermicola CNU120806. Journal of Applied Microbiology 113(4): 807-814
Zeng, R.; Fu, C.; Ma, S. 2012: Highly selective mild stepwise allylation of N-methoxybenzamides with allenes. Journal of the American Chemical Society 134(23): 9597-9600
Zhao, Z.; Chan, P.-S.; Li, H.; Wong, K.-L.; Wong, R.N.S.; Mak, N.-K.; Zhang, J.; Tam, H.-L.; Wong, W.-Y.; Kwong, D.W.J.; Wong, W.-K. 2012: Highly selective mitochondria-targeting amphiphilic silicon(IV) phthalocyanines with axially ligated rhodamine B for photodynamic therapy. Inorganic Chemistry 51(2): 812-821
Yu, J.; Zhang, C.; Dai, P.; Ge, S. 2009: Highly selective molecular recognition and high throughput detection of melamine based on molecularly imprinted sol-gel film. Analytica Chimica Acta 651(2): 209-214
Yebeutchou, R.M.; Dalcanale, E. 2009: Highly selective monomethylation of primary amines through host-guest product sequestration. Journal of the American Chemical Society 131(7): 2452-2453
Yasuzawa, M.; Edagawa, K.; Matsunaga, T.; Takaoka, H.; Yabutani, T. 2011: Highly selective needle-type glucose sensors prepared by the immobilization of glucose oxidase on γ-polyglutamic acid film. Analytical Sciences: the International Journal of the Japan Society for Analytical Chemistry 27(3): 337-340
Li, S.; Ma, S. 2011: Highly selective nickel-catalyzed methyl-carboxylation of homopropargylic alcohols for α-alkylidene-γ-butyrolactones. Organic Letters 13(22): 6046-6049
Yang, C.-M.; Jeganmohan, M.; Parthasarathy, K.; Cheng, C.-H. 2010: Highly selective nickel-catalyzed three-component coupling of alkynes with enones and alkenyl boronic acids: a novel route to substituted 1,3-dienes. Organic Letters 12(16): 3610-3613
Zhang, L.; Duan, D.; Liu, Y.; Ge, C.; Cui, X.; Sun, J.; Fang, J. 2014: Highly selective off-on fluorescent probe for imaging thioredoxin reductase in living cells. Journal of the American Chemical Society 136(1): 226-233
Ruddy, D.A.; Tilley, T.D. 2007: Highly selective olefin epoxidation with aqueous H2O2 over surface-modified TaSBA15 prepared via the TMP method. Chemical Communications 32: 3350-3352
Fukuhara, G.; Inoue, Y. 2011: Highly selective oligosaccharide sensing by a Curdlan-polythiophene hybrid. Journal of the American Chemical Society 133(4): 768-770
Qin, B.; Ong, W.Q.; Ye, R.; Du, Z.; Chen, X.; Yan, Y.; Zhang, K.; Su, H.; Zeng, H. 2011: Highly selective one-pot synthesis of H-bonded pentagon-shaped circular aromatic pentamers. Chemical Communications 47(19): 5419-5421
Ensafi, A.A.; Far, A.K.; Meghdadi, S. 2009: Highly selective optical-sensing film for lead(II) determination in water samples. Journal of Hazardous Materials 172(2-3): 1069-1075
Sahana, A.; Banerjee, A.; Guha, S.; Lohar, S.; Chattopadhyay, A.; Mukhopadhyay, S.K.; Das, D. 2012: Highly selective organic fluorescent probe for azide ion: formation of a "molecular ring". Analyst 137(7): 1544-1546
Wu, J.; Li, M.H.; Lin, J.P.; Wei, D.Z. 2011: Highly selective oxidation of benzyl alcohol using engineered Gluconobacter oxydans in biphasic system. Current Microbiology 62(4): 1123-1127
Ishimoto, R.; Kamata, K.; Mizuno, N. 2009: Highly selective oxidation of organosilanes to silanols with hydrogen peroxide catalyzed by a lacunary polyoxotungstate. Angewandte Chemie 48(47): 8900-8904
Zhao, S.; Liu, L.; Song, Y.-F. 2012: Highly selective oximation of aldehydes by reusable heterogeneous sandwich-type polyoxometalate catalyst. Dalton Transactions 41(33): 9855-9858
Yang, Y.; Niedermann, K.; Han, C.; Buchwald, S.L. 2014: Highly selective palladium-catalyzed cross-coupling of secondary alkylzinc reagents with heteroaryl halides. Organic Letters 16(17): 4638-4641
Yin, G.; Wu, T.; Liu, G. 2012: Highly selective palladium-catalyzed intramolecular chloroamination of unactivated alkenes by using hydrogen peroxide as an oxidant. Chemistry 18(2): 451-455
Zhao, Q.; Li, F.; Liu, S.; Yu, M.; Liu, Z.; Yi, T.; Huang, C. 2008: Highly selective phosphorescent chemosensor for fluoride based on an iridium(III) complex containing arylborane units. Inorganic Chemistry 47(20): 9256-9264
Yamaguchi, T.; Fujita, M. 2008: Highly selective photomediated 1,4-radical addition to o-quinones controlled by a self-assembled cage. Angewandte Chemie 47(11): 2067-2069
Liu, X.; Qi, C.; Bing, T.; Cheng, X.; Shangguan, D. 2009: Highly selective phthalocyanine-thymine conjugate sensor for Hg2+ based on target induced aggregation. Analytical Chemistry 81(9): 3699-3704
Ngeontae, W.; Aeungmaitrepirom, W.; Tuntulani, T.; Imyim, A. 2009: Highly selective preconcentration of Cu(II) from seawater and water samples using amidoamidoxime silica. Talanta 78(3): 1004-1010
Yang, T.; Zhang, X.-X.; Chen, M.-L.; Wang, J.-H. 2012: Highly selective preconcentration of ultra-trace cadmium by yeast surface engineering. Analyst 137(18): 4193-4199
Muthuraj, B.; Deshmukh, R.; Trivedi, V.; Iyer, P.K. 2014: Highly selective probe detects Cu2+ and endogenous NO gas in living cell. Acs Applied Materials and Interfaces 6(9): 6562-6569
FitzGerald, S.A.; Pierce, C.J.; Rowsell, J.L.C.; Bloch, E.D.; Mason, J.A. 2013: Highly selective quantum sieving of D2 from H2 by a metal-organic framework as determined by gas manometry and infrared spectroscopy. Journal of the American Chemical Society 135(25): 9458-9464
Ogawa, T.; Yuasa, J.; Kawai, T. 2010: Highly selective ratiometric emission color change by zinc-assisted self-assembly processes. Angewandte Chemie 49(30): 5110-5114
Choi, J.Y.; Kim, G.-H.; Guo, Z.; Lee, H.Y.; Swamy, K.M.K.; Pai, J.; Shin, S.; Shin, I.; Yoon, J. 2013: Highly selective ratiometric fluorescent probe for Au3+ and its application to bioimaging. Biosensors and Bioelectronics 49: 438-441
Dong, M.; Wang, Y.-W.; Peng, Y. 2010: Highly selective ratiometric fluorescent sensing for Hg(2+) and Au(3+), respectively, in aqueous media. Organic Letters 12(22): 5310-5313
Khakina, E.A.; Yurkova, A.A.; Peregudov, A.S.; Troyanov, S.I.; Trush, V.V.; Vovk, A.I.; Mumyatov, A.V.; Martynenko, V.M.; Balzarini, J.; Troshin, P.A. 2012: Highly selective reactions of C60Cl6 with thiols for the synthesis of functionalized [60]fullerene derivatives. Chemical Communications 48(57): 7158-7160
Krasovskiy, A.; Lipshutz, B.H. 2011: Highly selective reactions of unbiased alkenyl halides and alkylzinc halides: Negishi-Plus couplings. Organic Letters 13(15): 3822-3825
Higashi, T.; Hamase, K. 2007: Highly selective recognition and detection of biomolecules using designed functional molecule. Yakugaku Zasshi: Journal of the Pharmaceutical Society of Japan 127(12): 1895-1896
Zhang, M.; Ma, W.-J.; He, C.-T.; Jiang, L.; Lu, T.-B. 2013: Highly selective recognition and fluorescence imaging of adenosine polyphosphates in aqueous solution. Inorganic Chemistry 52(9): 4873-4879
Kado, S.; Otani, H.; Nakahara, Y.; Kimura, K. 2013: Highly selective recognition of acetate and bicarbonate by thiourea-functionalised inverse opal hydrogel in aqueous solution. Chemical Communications 49(9): 886-888
Zeng, L.; Liu, W.; Zhuang, X.; Wu, J.; Wang, P.; Zhang, W. 2010: Highly selective recognition of carbenicillin via concerted interactions in 100% aqueous solution. Chemical Communications 46(14): 2435-2437
Gong, H.-Y.; Wang, D.-X.; Xiang, J.-F.; Zheng, Q.-Y.; Wang, M.-X. 2007: Highly selective recognition of diols by a self-regulating fine-tunable methylazacalix[4]pyridine cavity: guest-dependent formation of molecular-sandwich and molecular-capsule complexes in solution and the solid state. Chemistry 13(27): 7791-7802
Li, X.; Liu, D.; Wang, Z. 2011: Highly selective recognition of naphthol isomers based on the fluorescence dye-incorporated SH-β-cyclodextrin functionalized gold nanoparticles. Biosensors and Bioelectronics 26(5): 2329-2333
Güzel, Yüksel.; Rainer, M.; Mirza, M.R.; Messner, C.B.; Bonn, Günther.K. 2013: Highly selective recovery of phosphopeptides using trypsin-assisted digestion of precipitated lanthanide-phosphoprotein complexes. Analyst 138(10): 2897-2905
Yang, Z.; Zhao, N.; Sun, Y.; Miao, F.; Liu, Y.; Liu, X.; Zhang, Y.; Ai, W.; Song, G.; Shen, X.; Yu, X.; Sun, J.; Wong, W.-Y. 2012: Highly selective red- and green-emitting two-photon fluorescent probes for cysteine detection and their bio-imaging in living cells. Chemical Communications 48(28): 3442-3444
Dey, R.; Mukherjee, N.; Ahammed, S.; Ranu, B.C. 2012: Highly selective reduction of nitroarenes by iron(0) nanoparticles in water. Chemical Communications 48(64): 7982-7984
Liang, A.; Li, J.; Jiang, C.; Jiang, Z. 2010: Highly selective resonance scattering detection of trace thrombin using aptamer-modified AuRe nanoprobe. Bioprocess and Biosystems Engineering 33(9): 1087-1094
Zo, H.Jin.; Song, J.Yeon.; Lee, J.Jin.; Velmathi, S.; Park, J.S. 2013: Highly selective response of bipyridyl-incorporated acetyelene dye for zinc acetate. Talanta 112: 80-84
Trans, D.N.; Cramer, N. 2011: Highly selective rhodium catalyzed domino C-H activation/cyclizations. Chimia 65(4): 271-273
Zigterman, J.L.; Woo, J.C.S.; Walker, S.D.; Tedrow, J.S.; Borths, C.J.; Bunel, E.E.; Faul, M.M. 2007: Highly selective rhodium-catalyzed conjugate addition reactions of 4-oxobutenamides. Journal of Organic Chemistry 72(23): 8870-8876
Thomas, R.M.; Keitz, B.K.; Champagne, T.M.; Grubbs, R.H. 2011: Highly selective ruthenium metathesis catalysts for ethenolysis. Journal of the American Chemical Society 133(19): 7490-7496
Wang, S.; Zhao, K.; Zang, W.; Zhang, Q.; Zhao, X.; Zhao, M.; He, X.; Liu, Q.; Feng, W.; Zheng, X. 2014: Highly selective screening of the bioactive compounds in Huoxue capsule using immobilized β(2)-adrenoceptor affinity chromatography. Analytical Biochemistry 457: 1-7
Wei, J.; Shen, A.; Wan, H.; Yan, J.; Yang, B.; Guo, Z.; Zhang, F.; Liang, X. 2014: Highly selective separation of aminoglycoside antibiotics on a zwitterionic Click TE-Cys column. Journal of Separation Science 37(14): 1781-1787
Hojniak, S.D.; Silverwood, I.P.; Khan, A.L.; Vankelecom, I.F.J.; Dehaen, W.; Kazarian, S.G.; Binnemans, K. 2014: Highly selective separation of carbon dioxide from nitrogen and methane by nitrile/glycol-difunctionalized ionic liquids in supported ionic liquid membranes (SILMs). Journal of Physical Chemistry. B 118(26): 7440-7449
Kumar, V.Vinod.; Anthony, S.Philip. 2014: Highly selective silver nanoparticles based label free colorimetric sensor for nitrite anions. Analytica Chimica Acta 842: 57-62
Totsingan, F.; Tedeschi, T.; Sforza, S.; Corradini, R.; Marchelli, R. 2009: Highly selective single nucleotide polymorphism recognition by a chiral (5S) PNA beacon. Chirality 21(1): 245-253
Yadav, R.K.; Oh, G.H.; Park, N.-J.; Kumar, A.; Kong, K.-j.; Baeg, J.-O. 2014: Highly selective solar-driven methanol from CO2 by a photocatalyst/biocatalyst integrated system. Journal of the American Chemical Society 136(48): 16728-16731
Li, R.; He, Q.; Hu, Z.; Zhang, S.; Zhang, L.; Chang, X. 2012: Highly selective solid-phase extraction of trace Pd(II) by murexide functionalized halloysite nanotubes. Analytica Chimica Acta 713: 136-144
Li, H.; Shi, W.; Zhao, K.; Niu, Z.; Li, H.; Cheng, P. 2013: Highly selective sorption and luminescent sensing of small molecules demonstrated in a multifunctional lanthanide microporous metal-organic framework containing 1D honeycomb-type channels. Chemistry 19(10): 3358-3365
Uchida, S.; Kawahara, R.; Ogasawara, Y.; Mizuno, N. 2013: Highly selective sorption and unique packing geometries of unsaturated hydrocarbons and CO2 in a fluorine-substituted organic-inorganic ionic crystal. Dalton Transactions 42(45): 16209-16215
Fu, H.-R.; Kang, Y.; Zhang, J. 2014: Highly selective sorption of small hydrocarbons and photocatalytic properties of three metal-organic frameworks based on tris(4-(1H-imidazol-1-yl)phenyl)amine ligand. Inorganic Chemistry 53(8): 4209-4214
Uchida, S.; Kawamoto, R.; Tagami, H.; Nakagawa, Y.; Mizuno, N. 2008: Highly selective sorption of small unsaturated hydrocarbons by nonporous flexible framework with silver ion. Journal of the American Chemical Society 130(37): 12370-12376
Ototake, N.; Nakamura, M.; Dobashi, Y.; Fukaya, H.; Kitagawa, O. 2009: Highly selective stereodivergent synthesis of separable amide rotamers, by using Pd chemistry, and their thermodynamic behavior. Chemistry 15(20): 5090-5095
Zhan, W.; Wei, F.; Xu, G.; Cai, Z.; Du, S.; Zhou, X.; Li, F.; Hu, Q. 2012: Highly selective stir bar coated with dummy molecularly imprinted polymers for trace analysis of bisphenol a in milk. Journal of Separation Science 35(8): 1036-1043
Bai, M.; Huang, J.; Zheng, X.; Song, Z.; Tang, M.; Mao, W.; Yuan, L.; Wu, J.; Weng, X.; Zhou, X. 2010: Highly selective suppression of melanoma cells by inducible DNA cross-linking agents: bis(catechol) derivatives. Journal of the American Chemical Society 132(43): 15321-15327
Okamura, H.; Takagi, H.; Isomura, T.; Morita, K.; Nagatani, H.; Imura, H. 2014: Highly selective synergism for the extraction of lanthanoid(III) ions with β-diketones and trioctylphosphine oxide in an ionic liquid. Analytical Sciences: the International Journal of the Japan Society for Analytical Chemistry 30(3): 323-325
Iakobson, G.; Beier, P. 2012: Highly selective synthesis of (E)-alkenyl-(pentafluorosulfanyl)benzenes through Horner-Wadsworth-Emmons reaction. Beilstein Journal of Organic Chemistry 8: 1185-1190
Shin, H.S.; Yoon, S.M.; Tang, Q.; Chon, B.; Joo, T.; Choi, H.C. 2008: Highly selective synthesis of C60 disks on graphite substrate by a vapor-solid process. Angewandte Chemie 47(4): 693-696
Le Gac, S.ép.; Marrot, J.ér.ôm.; Jabin, I. 2008: Highly selective synthesis of a 1,3,5-tris-protected calix[6]arene-type molecular platform through coordination and host-guest chemistry. Chemistry 14(11): 3316-3322
Zhang, Y.; Grass, M.E.; Kuhn, J.N.; Tao, F.; Habas, S.E.; Huang, W.; Yang, P.; Somorjai, G.A. 2008: Highly selective synthesis of catalytically active monodisperse rhodium nanocubes. Journal of the American Chemical Society 130(18): 5868-5869
Wang, G.; Mohan, S.; Negishi, E.-i. 2011: Highly selective synthesis of conjugated dienoic and trienoic esters via alkyne elementometalation-Pd-catalyzed cross-coupling. Proceedings of the National Academy of Sciences of the United States of America 108(28): 11344-11349
Smith, B.M.; Skellam, E.J.; Oxley, S.J.; Graham, A.E. 2007: Highly selective synthesis of oxabicycloalkanes by indium tribromide-mediated cyclization reactions of epoxyalkenes. Organic and Biomolecular Chemistry 5(12): 1979-1982
Verma, D.; Mobin, S.; Namboothiri, I.N.N. 2011: Highly selective synthesis of pyrazole and spiropyrazoline phosphonates via base-assisted reaction of the Bestmann-Ohira reagent with enones. Journal of Organic Chemistry 76(11): 4764-4770
Swenson, A.K.; Higgins, K.E.; Brewer, M.G.; Brennessel, W.W.; Coleman, M.G. 2012: Highly selective synthesis of tetra-substituted furans and cyclopropenes: copper(I)-catalyzed formal cycloadditions of internal aryl alkynes and diazoacetates. Organic and Biomolecular Chemistry 10(37): 7483-7486
Liu, C.; Dobhal, M.P.; Ethirajan, M.; Missert, J.R.; Pandey, R.K.; Balasubramanian, S.; Sukumaran, D.K.; Zhang, M.; Kadish, K.M.; Ohkubo, K.; Fukuzumi, S. 2008: Highly selective synthesis of the ring-B reduced chlorins by ferric chloride-mediated oxidation of bacteriochlorins: effects of the fused imide vs isocyclic ring on photophysical and electrochemical properties. Journal of the American Chemical Society 130(43): 14311-14323
Paul, O.; Beigang, Ré.; Rahm, M. 2009: Highly selective terahertz bandpass filters based on trapped mode excitation. Optics Express 17(21): 18590-18595
Ye, J.; Ma, L.S.; Daly, T.; Hall, J.L. 1997: Highly selective terahertz optical frequency comb generator. Optics Letters 22(5): 301-303
Zhou, C.; Fu, C.; Ma, S. 2007: Highly selective thiiranation of 1,2-allenyl sulfones with Br2 and Na2S2O3: mechanism and asymmetric synthesis of alkylidenethiiranes. Angewandte Chemie 46(23): 4379-4381
Bilgiçli, A.T.; Günsel, Ağan.; Kandaz, M.; Özkaya, A.Rıza. 2012: Highly selective thioalcohol modified phthalocyanine sensors for Ag(I) and Pd(II) based on target induced J- and H-type aggregations: synthesis, electrochemistry and peripheral metal ion binding studies. Dalton Transactions 41(23): 7047-7056
Ivanova, E.P.; Truong, V.K.; Gervinskas, G.; Mitik-Dineva, N.; Day, D.; Jones, R.T.; Crawford, R.J.; Juodkazis, S. 2012: Highly selective trapping of enteropathogenic E. coli on Fabry-Pérot sensor mirrors. Biosensors and Bioelectronics 35(1): 369-375
Liu, T.; Shao, X.; Wu, Y.; Shen, Q. 2012: Highly selective trifluoromethylation of 1,3-disubstituted arenes through iridium-catalyzed arene borylation. Angewandte Chemie 51(2): 540-543
Tayade, K.; Sahoo, S.K.; Bondhopadhyay, B.; Bhardwaj, V.K.; Singh, N.; Basu, A.; Bendre, R.; Kuwar, A. 2014: Highly selective turn-on fluorescent sensor for nanomolar detection of biologically important Zn2+ based on isonicotinohydrazide derivative: application in cellular imaging. Biosensors and Bioelectronics 61: 429-433
Huang, E.K.-w.; Hoang, M.-A.; Chen, G.; Ramezani-Darvish, S.; Haddadi, A.; Razeghi, M. 2012: Highly selective two-color mid-wave and long-wave infrared detector hybrid based on Type-Ii superlattices. Optics Letters 37(22): 4744-4746
Liu, Q.; Yu, B.; Ye, W.; Zhou, F. 2011: Highly selective uptake and release of charged molecules by pH-responsive polydopamine microcapsules. Macromolecular Bioscience 11(9): 1227-1234
Maity, D.; Govindaraju, T. 2011: Highly selective visible and near-IR sensing of Cu2+ based on thiourea-salicylaldehyde coordination in aqueous media. Chemistry 17(5): 1410-1414
Guo, Z.-Q.; Chen, W.-Q.; Duan, X.-M. 2010: Highly selective visual detection of Cu(II) utilizing intramolecular hydrogen bond-stabilized merocyanine in aqueous buffer solution. Organic Letters 12(10): 2202-2205
Zhao, X.J.; He, L.; Huang, C.Z. 2012: Highly selective visual distinction of pyrophosphate from other phosphate anions with 4-[(5-chloro-2-pyridyl)azo]-1,3-diaminobenzene in the presence of copper(II) ions. Talanta 101: 59-63
Plessius, R.; Kromhout, R.; Ramos, A.é L.D.; Ferbinteanu, M.; Mittelmeijer-Hazeleger, M.C.; Krishna, R.; Rothenberg, G.; Tanase, S. 2014: Highly selective water adsorption in a lanthanum metal-organic framework. Chemistry 20(26): 7922-7925
Zhu, B.-H.; Zhou, R.; Zheng, J.-C.; Deng, X.-M.; Sun, X.-L.; Shen, Q.; Tang, Y. 2010: Highly selective ylide-initiated Michael addition/cyclization reaction for synthesis of cyclohexadiene epoxide and vinylcyclopropane derivatives. Journal of Organic Chemistry 75(10): 3454-3457
Zhao, J.; Luo, T.; Zhang, X.; Lei, Y.; Gong, K.; Yan, Y. 2012: Highly selective zeolite membranes as explosive preconcentrators. Analytical Chemistry 84(15): 6303-6307
Huang, L.; Qi, J.; Wu, X.; Huang, K.; Jiang, H. 2013: Highly selective β-hydride elimination in Pd-catalyzed decarboxylative Heck-type reaction. Organic Letters 15(10): 2330-2333
Kanagaraj, K.; Pitchumani, K. 2014: Highly selective "turn-on" fluorescent and colorimetric sensing of fluoride ion using 2-(2-hydroxyphenyl)-2,3-dihydroquinolin-4(1H)-one based on excited-state proton transfer. Chemistry An Asian Journal 9(1): 146-152
Pan, M.; Ham, H.Chul.; Yu, W-Yueh.; Hwang, G.S.; Mullins, C.Buddie. 2013: Highly selective, facile NO2 reduction to NO at cryogenic temperatures on hydrogen precovered gold. Journal of the American Chemical Society 135(1): 436-442
Zhang, S.; Yang, C.; Zhu, W.; Zeng, B.; Yang, Y.; Xu, Y.; Qian, X. 2012: Highly selective, naked-eye and fluorescent "off-on" probe for detection of histidine/histidine-rich proteins and its application in living cell imaging. Organic and Biomolecular Chemistry 10(8): 1653-1658
Koteeswari, R.; Ashokkumar, P.; Malar, E.J.P.; Ramakrishnan, V.T.; Ramamurthy, P. 2011: Highly selective, sensitive and quantitative detection of Hg2+ in aqueous medium under broad pH range. Chemical Communications 47(27): 7695-7697
Neupane, L.N.; Thirupathi, P.; Jang, S.; Jang, M.J.; Kim, J.H.; Lee, K.-H. 2011: Highly selectively monitoring heavy and transition metal ions by a fluorescent sensor based on dipeptide. Talanta 85(3): 1566-1574
Lee, K.; Kim, D.; Schmuki, P. 2011: Highly self-ordered nanochannel TiO2 structures by anodization in a hot glycerol electrolyte. Chemical Communications 47(20): 5789-5791
Dass, S.; Rawstron, A.C.; Vital, E.M.; Henshaw, K.; McGonagle, D.; Emery, P. 2008: Highly sensitive B cell analysis predicts response to rituximab therapy in rheumatoid arthritis. Arthritis and Rheumatism 58(10): 2993-2999
Monteiro, C.M.C.; Pinheiro, L.F.; Izar, M.C.; Barros, S.W.; Vasco, M.B.; Fischer, S.M.; Povoa, R.M.; Brandão, S.A.; Santos, A.O.; Oliveira, L.; Carvalho, A.C.; Fonseca, F.A.H. 2010: Highly sensitive C-reactive protein and male gender are independently related to the severity of coronary disease in patients with metabolic syndrome and an acute coronary event. Brazilian Journal of Medical and Biological Research 43(3): 297-302
Irfan, G.; Ahmad, M. 2008: Highly sensitive C-reactive protein concentration and angiographic characteristics of coronary lesion. Journal of Ayub Medical College Abbottabad: Jamc 20(3): 100-103
Attaran, D.; Lari, S.M.; Khajehdaluee, M.; Ayatollahi, H.; Towhidi, M.; Asnaashari, A.; Marallu, H.G.; Mazloomi, M.; Mood, M.B. 2009: Highly sensitive C-reactive protein levels in Iranian patients with pulmonary complication of sulfur mustard poisoning and its correlation with severity of airway diseases. Human and Experimental Toxicology 28(12): 739-745
Boger, M.S.; Shintani, A.; Redhage, L.A.; Mitchell, V.; Haas, D.W.; Morrow, J.D.; Hulgan, T. 2009: Highly sensitive C-reactive protein, body mass index, and serum lipids in HIV-infected persons receiving antiretroviral therapy: a longitudinal study. Journal of Acquired Immune Deficiency Syndromes 52(4): 480-487
Olivé-Monllau, R.; Pereira, A.; Bartrolí, J.; Baeza, M.; Céspedes, F. 2010: Highly sensitive CNT composite amperometric sensors integrated in an automated flow system for the determination of free chlorine in waters. Talanta 81(4-5): 1593-1598
Yatsushiro, S.; Yamaguchi, Y.; Yamamura, S.; Shinohara, Y.; Baba, Y.; Kataoka, M. 2011: Highly sensitive DNA detection with a combination of 2 DNA-intercalating dyes for microchip electrophoresis. Journal of Pharmaceutical and Biomedical Analysis 55(1): 202-205
Yuan, Z.; Cheng, J.; Cheng, X.; He, Y.; Yeung, E.S. 2012: Highly sensitive DNA hybridization detection with single nanoparticle flash-lamp darkfield microscopy. Analyst 137(13): 2930-2932
Leelatian, N.; Boonchoo, P.; Wijitburaphat, S.; Moolsuwan, K.; Wongjaroen, P.; Chinnasang, P.; Anyamaneeratch, K.; Ruangchira-Urai, R.; Poungvarin, N. 2014: Highly sensitive EGFR mutation detection by specific amplification of mutant alleles. Experimental and Molecular Pathology 96(1): 85-91
Wakitani, S.; Okabe, T.; Kawaguchi, A.; Nawata, M.; Hashimoto, Y. 2010: Highly sensitive ELISA for determining serum keratan sulphate levels in the diagnosis of OA. Rheumatology 49(1): 57-62
Won, J.Y.; Min, J. 2010: Highly sensitive Escherichia coli O157:H7 detection in a large volume sample using a conical polymer tube chamber consisting of micro-glass beads. Biosensors and Bioelectronics 26(1): 112-117
Kvitvang, H.F.N.; Andreassen, T.; Adam, T.; Villas-Bôas, S.G.; Bruheim, P. 2011: Highly sensitive GC/MS/MS method for quantitation of amino and nonamino organic acids. Analytical Chemistry 83(7): 2705-2711
Belal, F.; Walash, M.; El-Enany, N.; Zayed, S. 2013: Highly sensitive HPLC method for assay of aliskiren in human plasma through derivatization with 1-naphthyl isocyanate using UV detection. Journal of Chromatography. B Analytical Technologies in the Biomedical and Life Sciences 933: 24-29
Huang, M.M.C.; Leong, S.M.; Chua, H.W.; Tucker, S.; Cheong, W.C.; Chiu, L.; Li, M.-H.; Koay, E.S.-C. 2014: Highly sensitive KRAS mutation detection from formalin-fixed paraffin-embedded biopsies and circulating tumour cells using wild-type blocking polymerase chain reaction and Sanger sequencing. Molecular Diagnosis and Therapy 18(4): 459-468
Xu, R.N.; Vaca, P.; Rieser, M.J.; El-Shourbagy, T.A. 2009: Highly sensitive LC-MS-MS analysis of a pharmaceutical compound in human plasma using monolithic phase-based on-line extraction. Journal of Chromatographic Science 47(6): 473-477
Suresh, P.S.; Mullangi, R.; Sukumaran, S.K. 2014: Highly sensitive LC-MS/MS method for determination of galantamine in rat plasma: application to pharmacokinetic studies in rats. Biomedical Chromatography: Bmc 28(12): 1633-1640
Sharma, K.; Kandaswamy, M.; Mithra, C.; Meena, A.K.; Giri, S.; Rajagopal, S.; Mullangi, R. 2012: Highly sensitive LC-MS/MS-ESi method for simultaneous quantitation of albendazole and ricobendazole in rat plasma and its application to a rat pharmacokinetic study. Biomedical Chromatography: Bmc 26(2): 247-255
Toyoda, H.; Kumada, T.; Tada, T. 2011: Highly sensitive Lens culinaris agglutinin-reactive α-fetoprotein: a new tool for the management of hepatocellular carcinoma. Oncology 81(Suppl 1): 61-65
Kaneshiro, K.; Fukuyama, Y.; Iwamoto, S.; Sekiya, S.; Tanaka, K. 2011: Highly sensitive MALdi analyses of glycans by a new aminoquinoline-labeling method using 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid liquid matrix. Analytical Chemistry 83(10): 3663-3667
Liu, H.; Lu, X.; Deng, C.; Yan, X. 2013: Highly sensitive MC-LR detection by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with magnetic mesoporous silica for fast extraction. Rapid Communications in Mass Spectrometry: Rcm 27(21): 2515-2518
Chen, Y.; Cheng, T.; Cheng, C.; Wang, C.; Chen, C.; Wei, C.; Chen, Y. 2010: Highly sensitive MOS photodetector with wide band responsivity assisted by nanoporous anodic aluminum oxide membrane. Optics Express 18(1): 56-62
Huang, W.; Besar, K.; LeCover, R.; Rule, A.M.ía.; Breysse, P.N.; Katz, H.E. 2012: Highly sensitive NH3 detection based on organic field-effect transistors with tris(pentafluorophenyl)borane as receptor. Journal of the American Chemical Society 134(36): 14650-14653
González-Salgado, A.; González-Jaén, T.; Vázquez, C.; Patiño, B.én. 2011: Highly sensitive PCR-based detection specific to Aspergillus flavus. Methods in Molecular Biology 739: 211-216
Choi, J.-J.; Jang, M.; Kim, J.; Park, H. 2010: Highly sensitive PNA array platform technology for single nucleotide mismatch discrimination. Journal of Microbiology and Biotechnology 20(2): 287-293
Gong, T.; Cui, Y.; Goh, D.; Voon, K.Kien.; Shum, P.Ping.; Humbert, G.; Auguste, J-Louis.; Dinh, X-Quyen.; Yong, K-Tye.; Olivo, M. 2015: Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles. Biosensors and Bioelectronics 64: 227-233
Li, J.; Chen, L.; Lou, T.; Wang, Y. 2011: Highly sensitive SERS detection of As3+ ions in aqueous media using glutathione functionalized silver nanoparticles. Acs Applied Materials and Interfaces 3(10): 3936-3941
Ding, X.; Kong, L.; Wang, J.; Fang, F.; Li, D.; Liu, J. 2013: Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions. Acs Applied Materials and Interfaces 5(15): 7072-7078
U S, D.; Fu, C.Y.; Soh, K.S.; Ramaswamy, B.; Kumar, A.; Olivo, M. 2012: Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber. Biosensors and Bioelectronics 33(1): 293-298
Guerrini, L.; Pazos, E.; Penas, C.; Vázquez, M.E.; Mascareñas, J.L.; Alvarez-Puebla, R.A. 2013: Highly sensitive SERS quantification of the oncogenic protein c-Jun in cellular extracts. Journal of the American Chemical Society 135(28): 10314-10317
Wang, J.; Dai, D. 2010: Highly sensitive Si nanowire-based optical sensor using a Mach-Zehnder interferometer coupled microring. Optics Letters 35(24): 4229-4231
Shi, L.; Naik, A.J.T.; Goodall, J.B.M.; Tighe, C.; Gruar, R.; Binions, R.; Parkin, I.; Darr, J. 2013: Highly sensitive ZnO nanorod- and nanoprism-based NO2 gas sensors: size and shape control using a continuous hydrothermal pilot plant. Langmuir: the Acs Journal of Surfaces and Colloids 29(33): 10603-10609
Chang, S-Jinn.; Hsueh, T-Jen.; Chen, I-Cherng.; Huang, B-Ran. 2008: Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles. Nanotechnology 19(17): 175502
Dai, M.-Z.; Lin, Y.-L.; Lin, H.-C.; Zan, H.-W.; Chang, K.-T.; Meng, H.-F.; Liao, J.-W.; Tsai, M.-J.; Cheng, H. 2013: Highly sensitive ammonia sensor with organic vertical nanojunctions for noninvasive detection of hepatic injury. Analytical Chemistry 85(6): 3110-3117
Kannan, P.; Chen, H.; Lee, V.Tswen-Wen.; Kim, D-Hwan. 2011: Highly sensitive amperometric detection of bilirubin using enzyme and gold nanoparticles on sol-gel film modified electrode. Talanta 86: 400-407
Abu-Rabeah, K.; Ashkenazi, A.; Atias, D.; Amir, L.; Marks, R.S. 2009: Highly sensitive amperometric immunosensor for the detection of Escherichia coli. Biosensors and Bioelectronics 24(12): 3461-3466
Kurd, M.; Salimi, A.; Hallaj, R. 2013: Highly sensitive amperometric sensor for micromolar detection of trichloroacetic acid based on multiwalled carbon nanotubes and Fe(II)-phtalocyanine modified glassy carbon electrode. Materials Science and Engineering. C Materials for Biological Applications 33(3): 1720-1726
Zhang, J.D.; Schindler, T.; Küng, E.; Ebeling, M.; Certa, U. 2014: Highly sensitive amplicon-based transcript quantification by semiconductor sequencing. Bmc Genomics 15: 565
Qin, L.; Vastl, J.; Gao, J. 2010: Highly sensitive amyloid detection enabled by thioflavin T dimers. Molecular Biosystems 6(10): 1791-1795
Lee, D.-H.; Han, S.-C.; Kim, T.-H.; Yun, J.-I. 2011: Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy. Analytical Chemistry 83(24): 9456-9461
Kwon, J.Y.; Chang, S.B.; Jang, Y.O.; Dawod, M.; Chung, D.S. 2013: Highly sensitive analysis of catecholamines by counter-flow electrokinetic supercharging in the constant voltage mode. Journal of Separation Science 36(12): 1973-1979
Cao, W.; Hu, S.-S.; Li, X.-Y.; Pang, X.-Q.; Cao, J.; Ye, L.-H.; Dai, H.-B.; Liu, X.-J.; Da, J.-H.; Chu, C. 2014: Highly sensitive analysis of flavonoids by zwitterionic microemulsion electrokinetic chromatography coupled with light-emitting diode-induced fluorescence detection. Journal of Chromatography. a 1358: 277-284
Lin, Z.; Sun, X.; Lin, Y.; Chen, G. 2013: Highly sensitive analysis of four hemeproteins by dynamically-coated capillary electrophoresis with chemiluminescence detector using an off-column coaxial flow interface. Analyst 138(8): 2269-2278
Honda, A.; Yamashita, K.; Miyazaki, H.; Shirai, M.; Ikegami, T.; Xu, G.; Numazawa, M.; Hara, T.; Matsuzaki, Y. 2008: Highly sensitive analysis of sterol profiles in human serum by LC-ESI-MS/MS. Journal of Lipid Research 49(9): 2063-2073
Anraku, K.; Fukuda, R.; Takamune, N.; Misumi, S.; Okamoto, Y.; Otsuka, M.; Fujita, M. 2010: Highly sensitive analysis of the interaction between HIV-1 Gag and phosphoinositide derivatives based on surface plasmon resonance. Biochemistry 49(25): 5109-5116
Feng, F.; Zhao, Y.; Yong, W.; Sun, L.; Jiang, G.; Chu, X. 2011: Highly sensitive and accurate screening of 40 dyes in soft drinks by liquid chromatography-electrospray tandem mass spectrometry. Journal of Chromatography. B Analytical Technologies in the Biomedical and Life Sciences 879(20): 1813-1818
Jágerská, J.; Tuzson, B.él.; Looser, H.; Bismuto, A.; Faist, J.ér.ôm.; Prinz, H.; Emmenegger, L. 2013: Highly sensitive and fast detection of propane-butane using a 3 μm quantum cascade laser. Applied Optics 52(19): 4613-4619
Patil, D.; Patil, P.; Subramanian, V.; Joy, P.A.; Potdar, H.S. 2010: Highly sensitive and fast responding CO sensor based on Co3O4 nanorods. Talanta 81(1-2): 37-43
Yin, M.; Gu, B.; Zhao, Q.; Qian, J.; Zhang, A.; An, Q.; He, S. 2011: Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating. Analytical and Bioanalytical Chemistry 399(10): 3623-3631
Yu, M.; Shi, M.; Chen, Z.; Li, F.; Li, X.; Gao, Y.; Xu, J.; Yang, H.; Zhou, Z.; Yi, T.; Huang, C. 2008: Highly sensitive and fast responsive fluorescence turn-on chemodosimeter for Cu2+ and its application in live cell imaging. Chemistry 14(23): 6892-6900
Li, H.; Fan, J.; Hu, M.; Cheng, G.; Zhou, D.; Wu, T.; Song, F.; Sun, S.; Duan, C.; Peng, X. 2012: Highly sensitive and fast-responsive fluorescent chemosensor for palladium: reversible sensing and visible recovery. Chemistry 18(39): 12242-12250
Kojima, M.; Kamada-Nobusada, T.; Komatsu, H.; Takei, K.; Kuroha, T.; Mizutani, M.; Ashikari, M.; Ueguchi-Tanaka, M.; Matsuoka, M.; Suzuki, K.; Sakakibara, H. 2009: Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant and Cell Physiology 50(7): 1201-1214
Li, L.; Wang, Q.; Feng, J.; Tong, L.; Tang, B. 2014: Highly sensitive and homogeneous detection of membrane protein on a single living cell by aptamer and nicking enzyme assisted signal amplification based on microfluidic droplets. Analytical Chemistry 86(10): 5101-5107
Liu, L.; Xia, N.; Liu, H.; Kang, X.; Liu, X.; Xue, C.; He, X. 2014: Highly sensitive and label-free electrochemical detection of micro RNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction. Biosensors and Bioelectronics 53: 399-405
Luo, M.; Li, N.; Liu, Y.; Chen, C.; Xiang, X.; Ji, X.; He, Z. 2014: Highly sensitive and multiple DNA biosensor based on isothermal strand-displacement polymerase reaction and functionalized magnetic microparticles. Biosensors and Bioelectronics 55: 318-323
Lu, J.; Liu, H.; Deng, S.; Zheng, M.; Wang, Y.; van Kan, J.A.; Tang, S.H.; Zhang, X.; Sow, C.H.; Mhaisalkar, S.G. 2014: Highly sensitive and multispectral responsive phototransistor using tungsten-doped VO2 nanowires. Nanoscale 6(13): 7619-7627
He, C.; Zheng, L.; Xu, Y.; Liu, M.; Li, Y.; Xu, J. 2013: Highly sensitive and noninvasive detection of epidermal growth factor receptor T790M mutation in non-small cell lung cancer. Clinica Chimica Acta; International Journal of Clinical Chemistry 425: 119-124
Inagaki, S.; Tano, Y.; Yamakata, Y.; Higashi, T.; Min, J.Z.; Toyo'oka, T. 2010: Highly sensitive and positively charged precolumn derivatization reagent for amines and amino acids in liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry: Rcm 24(9): 1358-1364
Murakoshi, H.; Lee, S.-J.; Yasuda, R. 2008: Highly sensitive and quantitative FRET-FLIM imaging in single dendritic spines using improved non-radiative YFP. Brain Cell Biology 36(1-4): 31-42
Zhu, Z.; Zhang, W.; Leng, X.; Zhang, M.; Guan, Z.; Lu, J.; Yang, C.J. 2012: Highly sensitive and quantitative detection of rare pathogens through agarose droplet microfluidic emulsion PCR at the single-cell level. Lab on a Chip 12(20): 3907-3913
Operario, D.J.; Moser, M.J.; St George, K. 2010: Highly sensitive and quantitative detection of the H274Y oseltamivir resistance mutation in seasonal A/H1N1 influenza virus. Journal of Clinical Microbiology 48(10): 3517-3524
Ji, K.; de Carvalho, L.P.; Bi, X.; Seneviratnankn, A.; Bhakoo, K.; Chan, M.; Yau Li, S.F. 2014: Highly sensitive and quantitative human thrombospondin-1 detection by an M55 aptasensor and clinical validation in patients with atherosclerotic disease. Biosensors and Bioelectronics 55: 405-411
Chen, M.-L.; Fu, X.-M.; Liu, J.-Q.; Ye, T.-T.; Hou, S.-Y.; Huang, Y.-Q.; Yuan, B.-F.; Wu, Y.; Feng, Y.-Q. 2012: Highly sensitive and quantitative profiling of acidic phytohormones using derivatization approach coupled with nano-LC-ESI-Q-TOF-MS analysis. Journal of Chromatography. B Analytical Technologies in the Biomedical and Life Sciences 905: 67-74
Mistri, H.N.; Jangid, A.G.; Pudage, A.; Rathod, D.M.; Shrivastav, P.S. 2008: Highly sensitive and rapid LC-ESI-MS/MS method for the simultaneous quantification of uroselective alpha1-blocker, alfuzosin and an antimuscarinic agent, solifenacin in human plasma. Journal of Chromatography. B Analytical Technologies in the Biomedical and Life Sciences 876(2): 236-244
Sakamoto, M.; Shoji, A.; Sugawara, M. 2013: Highly sensitive and rapid assay of substance P and streptolysin O in human serum using immuno-liposomes and gramicidin channels. Analytical Sciences: the International Journal of the Japan Society for Analytical Chemistry 29(9): 877-883
Cao, J.; Feng, C.; Liu, Y.; Wang, S.; Liu, F. 2014: Highly sensitive and rapid bacteria detection using molecular beacon-Au nanoparticles hybrid nanoprobes. Biosensors and Bioelectronics 57: 133-138
Tang, Y.; Zou, J.; Ma, C.; Ali, Z.; Li, Z.; Li, X.; Ma, N.; Mou, X.; Deng, Y.; Zhang, L.; Li, K.; Lu, G.; Yang, H.; He, N. 2013: Highly sensitive and rapid detection of Pseudomonas aeruginosa based on magnetic enrichment and magnetic separation. Theranostics 3(2): 85-92
Ding, Y.; Mutharasan, R. 2011: Highly sensitive and rapid detection of microcystin-LR in source and finished water samples using cantilever sensors. Environmental Science and Technology 45(4): 1490-1496
Hassan, A-Rahim.Hussein.Abdel-Azzem.; de la Escosura-Muñiz, A.; Merkoçi, A. 2015: Highly sensitive and rapid determination of Escherichia coli O157:H7 in minced beef and water using electrocatalytic gold nanoparticle tags. Biosensors and Bioelectronics 67: 511-515
Matsubara, A.; Uchikata, T.; Shinohara, M.; Nishiumi, S.; Yoshida, M.; Fukusaki, E.; Bamba, T. 2012: Highly sensitive and rapid profiling method for carotenoids and their epoxidized products using supercritical fluid chromatography coupled with electrospray ionization-triple quadrupole mass spectrometry. Journal of Bioscience and Bioengineering 113(6): 782-787
Patel, D.P.; Sharma, P.; Sanyal, M.; Singhal, P.; Shrivastav, P.S. 2012: Highly sensitive and rapid ultra-performance liquid chromatography-tandem mass spectrometry method for the determination of nifedipine in human plasma and its application to a bioequivalence study. Biomedical Chromatography: Bmc 26(12): 1509-1518
Li, W.; Jin, G.; Chen, H.; Kong, J. 2009: Highly sensitive and reproducible cyclodextrin-modified gold electrodes for probing trace lead in blood. Talanta 78(3): 717-722
Qiang, L.; Vaddiraju, S.; Rusling, J.F.; Papadimitrakopoulos, F. 2010: Highly sensitive and reusable Pt-black microfluidic electrodes for long-term electrochemical sensing. Biosensors and Bioelectronics 26(2): 682-688
Touahir, L.; Moraillon, A.; Allongue, P.; Chazalviel, J.-N.; Henry de Villeneuve, C.; Ozanam, F.; Solomon, I.; Gouget-Laemmel, A.C. 2009: Highly sensitive and reusable fluorescence microarrays based on hydrogenated amorphous silicon-carbon alloys. Biosensors and Bioelectronics 25(4): 952-955
Zhang, G.-J.; Huang, M.J.; Luo, Z.H.H.; Tay, G.K.I.; Lim, E.-J.A.; Liu, E.T.; Thomsen, J.S. 2010: Highly sensitive and reversible silicon nanowire biosensor to study nuclear hormone receptor protein and response element DNA interactions. Biosensors and Bioelectronics 26(2): 365-370
Wen, S.; Zeng, T.; Liu, L.; Zhao, K.; Zhao, Y.; Liu, X.; Wu, H.-C. 2011: Highly sensitive and selective DNA-based detection of mercury(II) with α-hemolysin nanopore. Journal of the American Chemical Society 133(45): 18312-18317
Duan, L.; Xu, Y.; Qian, X. 2008: Highly sensitive and selective Pd2+ sensor of naphthalimide derivative based on complexation with alkynes and thio-heterocycle. Chemical Communications 47: 6339-6341
Salimi, A.; Hallaj, R.; Kavosi, B.; Hagighi, B. 2010: Highly sensitive and selective amperometric sensors for nanomolar detection of iodate and periodate based on glassy carbon electrode modified with iridium oxide nanoparticles. Analytica Chimica Acta 661(1): 28-34
Zhang, Y.; Tobias, H.J.; Brenna, J.T. 2012: Highly sensitive and selective analysis of urinary steroids by comprehensive two-dimensional gas chromatography combined with positive chemical ionization quadrupole mass spectrometry. Analyst 137(13): 3102-3110
Quan, Y.H.; Kim, B.; Park, J.-H.; Choi, Y.; Choi, Y.H.; Kim, H.K. 2014: Highly sensitive and selective anticancer effect by conjugated HA-cisplatin in non-small cell lung cancer overexpressed with CD44. Experimental Lung Research 40(10): 475-484
Qiu, L.-P.; Wu, Z.-S.; Shen, G.-L.; Yu, R.-Q. 2011: Highly sensitive and selective bifunctional oligonucleotide probe for homogeneous parallel fluorescence detection of protein and nucleotide sequence. Analytical Chemistry 83(8): 3050-3057
Wang, Z.; Wu, L.; Shen, B.; Jiang, Z. 2013: Highly sensitive and selective cartap nanosensor based on luminescence resonance energy transfer between NaYF4:Yb,Ho nanocrystals and gold nanoparticles. Talanta 114: 124-130
Dong, H.; Wang, C.; Xiong, Y.; Lu, H.; Ju, H.; Zhang, X. 2013: Highly sensitive and selective chemiluminescent imaging for DNA detection by ligation-mediated rolling circle amplified synthesis of DNAzyme. Biosensors and Bioelectronics 41: 348-353
Kwon, O.S.; Park, S.J.; Yoon, H.; Jang, J. 2012: Highly sensitive and selective chemiresistive sensors based on multidimensional polypyrrole nanotubes. Chemical Communications 48(85): 10526-10528
Lee, M.H.; Wu, J.-S.; Lee, J.W.; Jung, J.H.; Kim, J.S. 2007: Highly sensitive and selective chemosensor for Hg2+ based on the rhodamine fluorophore. Organic Letters 9(13): 2501-2504
Du, J.; Liu, M.; Lou, X.; Zhao, T.; Wang, Z.; Xue, Y.; Zhao, J.; Xu, Y. 2012: Highly sensitive and selective chip-based fluorescent sensor for mercuric ion: development and comparison of turn-on and turn-off systems. Analytical Chemistry 84(18): 8060-8066
Zhao, Y.; Zhang, X.-B.; Han, Z.-X.; Qiao, L.; Li, C.-Y.; Jian, L.-X.; Shen, G.-L.; Yu, R.-Q. 2009: Highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+ in aqueous solution and living cells. Analytical Chemistry 81(16): 7022-7030
Yu, C.; Zhang, J.; Wang, R.; Chen, L. 2010: Highly sensitive and selective colorimetric and off-on fluorescent probe for Cu(2+) based on rhodamine derivative. Organic and Biomolecular Chemistry 8(23): 5277-5279
Liu, W.; Zhang, D.; Tang, Y.; Wang, Y.; Yan, F.; Li, Z.; Wang, J.; Zhou, H.S. 2012: Highly sensitive and selective colorimetric detection of cartap residue in agricultural products. Talanta 101: 382-387
Ni, P.; Sun, Y.; Dai, H.; Hu, J.; Jiang, S.; Wang, Y.; Li, Z. 2015: Highly sensitive and selective colorimetric detection of glutathione based on Ag [I] ion-3,3',5,5'-tetramethylbenzidine (TMB). Biosensors and Bioelectronics 63: 47-52
Chen, X.; Ying, A.; Gao, Z. 2012: Highly sensitive and selective colorimetric genotyping of single-nucleotide polymorphisms based on enzyme-amplified ligation on magnetic beads. Biosensors and Bioelectronics 36(1): 89-94
Chen, L.; Fu, X.; Lu, W.; Chen, L. 2013: Highly sensitive and selective colorimetric sensing of Hg2+ based on the morphology transition of silver nanoprisms. Acs Applied Materials and Interfaces 5(2): 284-290
Zhang, X.; Zhang, Y.; Zhao, H.; He, Y.; Li, X.; Yuan, Z. 2013: Highly sensitive and selective colorimetric sensing of antibiotics in milk. Analytica Chimica Acta 778: 63-69
Lee, J.Heon.; Wang, Z.; Liu, J.; Lu, Y. 2008: Highly sensitive and selective colorimetric sensors for uranyl (UO2(2+)): development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. Journal of the American Chemical Society 130(43): 14217-14226
Sun, J.; Ge, J.; Liu, W.; Fan, Z.; Zhang, H.; Wang, P. 2011: Highly sensitive and selective colorimetric visualization of streptomycin in raw milk using Au nanoparticles supramolecular assembly. Chemical Communications 47(35): 9888-9890
Gee, H.-C.; Lee, C.-H.; Jeong, Y.-H.; Jang, W.-D. 2011: Highly sensitive and selective cyanide detection via Cu2+ complex ligand exchange. Chemical Communications 47(43): 11963-11965
Todoroki, K.; Yoshida, H.; Hayama, T.; Itoyama, M.; Nohta, H.; Yamaguchi, M. 2011: Highly sensitive and selective derivatization-LC method for biomolecules based on fluorescence interactions and fluorous separations. Journal of Chromatography. B Analytical Technologies in the Biomedical and Life Sciences 879(17-18): 1325-1337
Wang, J.; Liu, B. 2008: Highly sensitive and selective detection of Hg(2+) in aqueous solution with mercury-specific DNA and Sybr Green i. Chemical Communications 39: 4759-4761
Teh, H.B.; Li, H.; Yau Li, S.F. 2014: Highly sensitive and selective detection of Pb2+ ions using a novel and simple DNAzyme-based quartz crystal microbalance with dissipation biosensor. Analyst 139(20): 5170-5175
Peng, R.-P.; Chen, B.; Ji, H.-F.; Wu, L.-Z.; Tung, C.-H. 2012: Highly sensitive and selective detection of beryllium ions using a microcantilever modified with benzo-9-crown-3 doped hydrogel. Analyst 137(5): 1220-1224
Gao, Y.; Li, Y.; Zou, X.; Huang, H.; Su, X. 2012: Highly sensitive and selective detection of biothiols using graphene oxide-based "molecular beacon"-like fluorescent probe. Analytica Chimica Acta 731: 68-74
Liu, J.; Qin, Y.; Li, D.; Wang, T.; Liu, Y.; Wang, J.; Wang, E. 2013: Highly sensitive and selective detection of cancer cell with a label-free electrochemical cytosensor. Biosensors and Bioelectronics 41: 436-441
Zhu, W.; Chen, T.; Ma, X.; Ma, H.; Chen, S. 2013: Highly sensitive and selective detection of dopamine based on hollow gold nanoparticles-graphene nanocomposite modified electrode. Colloids and Surfaces. B Biointerfaces 111: 321-326
Ren, X.; Xu, Q.-H. 2009: Highly sensitive and selective detection of mercury ions by using oligonucleotides, DNA intercalators, and conjugated polymers. Langmuir: the Acs Journal of Surfaces and Colloids 25(1): 29-31
Feng, H.-T.; Zheng, Y.-S. 2014: Highly sensitive and selective detection of nitrophenolic explosives by using nanospheres of a tetraphenylethylene macrocycle displaying aggregation-induced emission. Chemistry 20(1): 195-201
Lin, Y-Hsiu.; Tseng, W-Lung. 2009: Highly sensitive and selective detection of silver ions and silver nanoparticles in aqueous solution using an oligonucleotide-based fluorogenic probe. Chemical Communications 2009(43): 6619-6621
Yang, Q.; Li, F.; Huang, Y.; Xu, H.; Tang, L.; Wang, L.; Fan, C. 2013: Highly sensitive and selective detection of silver(I) in aqueous solution with silver(I)-specific DNA and Sybr Green i. Analyst 138(7): 2057-2060
Li, H.; Zhai, J.; Sun, X. 2011: Highly sensitive and selective detection of silver(I) ion using nano-C60 as an effective fluorescent sensing platform. Analyst 136(10): 2040-2043
Lin, Y.; Tao, Y.; Ren, J.; Pu, F.; Qu, X. 2011: Highly sensitive and selective detection of thiol-containing biomolecules using DNA-templated silver deposition. Biosensors and Bioelectronics 28(1): 339-343
Yang, J.; Kim, S.-E.; Cho, M.; Yoo, I.-K.; Choe, W.-S.; Lee, Y. 2014: Highly sensitive and selective determination of bisphenol-A using peptide-modified gold electrode. Biosensors and Bioelectronics 61: 38-44
Fang, B.; Liang, Y.; Chen, F. 2014: Highly sensitive and selective determination of cupric ions by using N,N'-bis(salicylidene)-o-phenylenediamine as fluorescent chemosensor and related applications. Talanta 119: 601-605
Pienpinijtham, P.; Han, X.Xia.; Ekgasit, S.; Ozaki, Y. 2011: Highly sensitive and selective determination of iodide and thiocyanate concentrations using surface-enhanced Raman scattering of starch-reduced gold nanoparticles. Analytical Chemistry 83(10): 3655-3662
Cheemalapati, S.; Devadas, B.; Chen, S.-M. 2014: Highly sensitive and selective determination of pyrazinamide at poly-L-methionine/reduced graphene oxide modified electrode by differential pulse voltammetry in human blood plasma and urine samples. Journal of Colloid and Interface Science 418: 132-139
Zheng, Z.-B.; Duan, Z.-M.; Ma, Y.-Y.; Wang, K.-Z. 2013: Highly sensitive and selective difunctional ruthenium(II) complex-based chemosensor for dihydrogen phosphate anion and ferrous cation. Inorganic Chemistry 52(5): 2306-2316
Niu, X.; Yang, W.; Guo, H.; Ren, J.; Gao, J. 2013: Highly sensitive and selective dopamine biosensor based on 3,4,9,10-perylene tetracarboxylic acid functionalized graphene sheets/multi-wall carbon nanotubes/ionic liquid composite film modified electrode. Biosensors and Bioelectronics 41: 225-231
Liu, M.; Wang, L.; Deng, J.; Chen, Q.; Li, Y.; Zhang, Y.; Li, H.; Yao, S. 2012: Highly sensitive and selective dopamine biosensor based on a phenylethynyl ferrocene/graphene nanocomposite modified electrode. Analyst 137(19): 4577-4583
Dasary, S.S.R.; Senapati, D.; Singh, A.Kumar.; Anjaneyulu, Y.; Yu, H.; Ray, P.Chandra. 2010: Highly sensitive and selective dynamic light-scattering assay for TNT detection using p-ATP attached gold nanoparticle. Acs Applied Materials and Interfaces 2(12): 3455-3460
Zhang, S.; Yu, T.; Sun, M.; Yu, H.; Zhang, Z.; Wang, S.; Jiang, H. 2014: Highly sensitive and selective fluorescence detection of copper (II) ion based on multi-ligand metal chelation. Talanta 126: 185-190
Song, C.; Zhang, X.; Jia, C.; Zhou, P.; Quan, X.; Duan, C. 2010: Highly sensitive and selective fluorescence sensor based on functional SBA-15 for detection of Hg2+ in aqueous media. Talanta 81(1-2): 643-649
Huang, S.; He, S.; Lu, Y.; Wei, F.; Zeng, X.; Zhao, L. 2011: Highly sensitive and selective fluorescent chemosensor for Ag+ based on a coumarin-Se2N chelating conjugate. Chemical Communications 47(8): 2408-2410
Li, H.; Zhang, S.-J.; Gong, C.-L.; Li, Y.-F.; Liang, Y.; Qi, Z.-G.; Chen, S. 2013: Highly sensitive and selective fluorescent chemosensor for Ni(2+) based on a new poly(arylene ether) with terpyridine substituent groups. Analyst 138(23): 7090-7093
Qi, Y.-X.; Zhang, M.; Fu, Q.-Q.; Liu, R.; Shi, G.-Y. 2013: Highly sensitive and selective fluorescent detection of cerebral lead(II) based on graphene quantum dot conjugates. Chemical Communications 49(90): 10599-10601
Li, Z.; Zhang, L.; Wang, L.; Guo, Y.; Cai, L.; Yu, M.; Wei, L. 2011: Highly sensitive and selective fluorescent sensor for Zn2+/Cu2+ and new approach for sensing Cu2+ by central metal displacement. Chemical Communications 47(20): 5798-5800
Xue, L.; Liu, C.; Jiang, H. 2009: Highly sensitive and selective fluorescent sensor for distinguishing cadmium from zinc ions in aqueous media. Organic Letters 11(7): 1655-1658
Ma, H.; Yao, L.; Li, P.; Ablikim, O.; Cheng, Y.; Zhang, M. 2014: Highly sensitive and selective fluorometric/electrochemical dual-channel sensors for TNT and DNT explosives. Chemistry 20(37): 11655-11658
Zhong, S.; Jang, C.-H. 2014: Highly sensitive and selective glucose sensor based on ultraviolet-treated nematic liquid crystals. Biosensors and Bioelectronics 59: 293-299
Jian, X.; Wasinger, E.C.; Lockard, J.V.; Chen, L.X.; He, C. 2009: Highly sensitive and selective gold(I) recognition by a metalloregulator in Ralstonia metallidurans. Journal of the American Chemical Society 131(31): 10869-10871
Ahmed, S.; Abdel-Wadood, H.M.; Mohamed, N.A. 2013: Highly sensitive and selective high-performance liquid chromatography method for bioequivalence study of cefpodoxime proxetil in rabbit plasma via fluorescence labeling of its active metabolite. Journal of Chromatography. B Analytical Technologies in the Biomedical and Life Sciences 934: 34-40
Prasad, B.B.; Srivastava, A.; Tiwari, M.P. 2013: Highly sensitive and selective hyphenated technique (molecularly imprinted polymer solid-phase microextraction-molecularly imprinted polymer sensor) for ultra trace analysis of aspartic acid enantiomers. Journal of Chromatography. a 1283: 9-19
Chen, A.; Du, D.; Lin, Y. 2012: Highly sensitive and selective immuno-capture/electrochemical assay of acetylcholinesterase activity in red blood cells: a biomarker of exposure to organophosphorus pesticides and nerve agents. Environmental Science and Technology 46(3): 1828-1833
Kumar, M.; Zhang, P. 2009: Highly sensitive and selective label-free optical detection of DNA hybridization based on photon upconverting nanoparticles. Langmuir: the Acs Journal of Surfaces and Colloids 25(11): 6024-6027
Kumar, M.; Zhang, P. 2010: Highly sensitive and selective label-free optical detection of mercuric ions using photon upconverting nanoparticles. Biosensors and Bioelectronics 25(11): 2431-2435
Safavi, A.; Shams, E. 2000: Highly sensitive and selective measurements of cobalt by catalytic adsorptive cathodic stripping voltammetry. Talanta 51(6): 1117-1123
Niu, X.; Lan, M.; Zhao, H.; Chen, C. 2013: Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures. Analytical Chemistry 85(7): 3561-3569
Misawa, N.; Mitsuno, H.; Kanzaki, R.; Takeuchi, S. 2010: Highly sensitive and selective odorant sensor using living cells expressing insect olfactory receptors. Proceedings of the National Academy of Sciences of the United States of America 107(35): 15340-15344
Xiang, Y.; Li, Z.; Chen, X.; Tong, A. 2008: Highly sensitive and selective optical chemosensor for determination of Cu2+ in aqueous solution. Talanta 74(5): 1148-1153
Long, F.; Zhu, A.; Zhou, X.; Wang, H.; Zhao, Z.; Liu, L.; Shi, H. 2014: Highly sensitive and selective optofluidics-based immunosensor for rapid assessment of Bisphenol a leaching risk. Biosensors and Bioelectronics 55: 19-25
Ho, Y.-M.; Tsoi, Y.-K.; Leung, K.S.-Y. 2013: Highly sensitive and selective organophosphate screening in twelve commodities of fruits, vegetables and herbal medicines by dispersive liquid-liquid microextraction. Analytica Chimica Acta 775: 58-66
Zhang, B.; Guo, L-Hong. 2012: Highly sensitive and selective photoelectrochemical DNA sensor for the detection of Hg²⁺ in aqueous solutions. Biosensors and Bioelectronics 37(1): 112-115
Li, W.; Sheng, P.; Cai, J.; Feng, H.; Cai, Q. 2014: Highly sensitive and selective photoelectrochemical biosensor platform for polybrominated diphenyl ether detection using the quantum dots sensitized three-dimensional, macroporous ZnO nanosheet photoelectrode. Biosensors and Bioelectronics 61: 209-214
Shamsipur, M.; Miran Beigi, A.A.; Teymouri, M.; Rasoolipour, S.; Asfari, Z. 2009: Highly sensitive and selective poly(vinyl chloride)-membrane potentiometric sensors based on a calix[4]arene derivative for 2-furaldehyde. Analytical Chemistry 81(16): 6789-6796
Li, G.; Zhang, X.; You, J.; Song, C.; Sun, Z.; Xia, L.; Suo, Y. 2011: Highly sensitive and selective pre-column derivatization high-performance liquid chromatography approach for rapid determination of triterpenes oleanolic and ursolic acids and application to Swertia species: optimization of triterpenic acids extraction and pre-column derivatization using response surface methodology. Analytica Chimica Acta 688(2): 208-218
Mahapatra, A.K.; Manna, S.K.; Mandal, D.; Das Mukhopadhyay, C. 2013: Highly sensitive and selective rhodamine-based "off-on" reversible chemosensor for tin (Sn4+) and imaging in living cells. Inorganic Chemistry 52(19): 10825-10834
Liu, S.; Wei, M.; Zheng, X.; Xu, S.; Zhou, C. 2014: Highly sensitive and selective sensing platform based on π-π interaction between tricyclic aromatic hydrocarbons with thionine-graphene composite. Analytica Chimica Acta 826: 21-27
Zhou, N.; Luo, H-Dong.; Li, N.; Jia, Y-zhu.; Li, Y-Qun. 2011: Highly sensitive and selective spectrofluorimetric approach for the rapid determination of trace benzo[α]pyrene in drinking water and in solutions leached from disposable paper cups. Luminescence: the Journal of Biological and Chemical Luminescence 26(1): 35-43
Attia, M.S.; Aboaly, M.M. 2010: Highly sensitive and selective spectrofluorimetric determination of metoclopramide hydrochloride in pharmaceutical tablets and serum samples using Eu3+ ion doped in sol-gel matrix. Talanta 82(1): 78-84
Tang, B.; Wang, X.; Wang, G.; Yu, C.; Chen, Z. 2006: Highly sensitive and selective spectrofluorimetric determination of tolnaftate through the formation of ternary inclusion complex of beta-naphthol/beta-cyclodextrin/anionic surfactant system. Talanta 69(1): 113-120
Choi, J.K.; Sargsyan, G.; Olive, A.M.; Balaz, M. 2013: Highly sensitive and selective spectroscopic detection of mercury(II) in water by using pyridylporphyrin-DNA conjugates. Chemistry 19(7): 2515-2522
Xi, Q.; Zhou, D.-M.; Kan, Y.-Y.; Ge, J.; Wu, Z.-K.; Yu, R.-Q.; Jiang, J.-H. 2014: Highly sensitive and selective strategy for microRNA detection based on WS2 nanosheet mediated fluorescence quenching and duplex-specific nuclease signal amplification. Analytical Chemistry 86(3): 1361-1365
Woo, H.-S.; Na, C.W.; Kim, I.-D.; Lee, J.-H. 2012: Highly sensitive and selective trimethylamine sensor using one-dimensional ZnO-Cr2O3 hetero-nanostructures. Nanotechnology 23(24): 245501
Liu, Y.; Sun, Y.; Du, J.; Lv, X.; Zhao, Y.; Chen, M.; Wang, P.; Guo, W. 2011: Highly sensitive and selective turn-on fluorescent and chromogenic probe for Cu2+ and ClO- based on a N-picolinyl rhodamine B-hydrazide derivative. Organic and Biomolecular Chemistry 9(2): 432-437
Hu, Z.-Q.; Lin, C.-s.; Wang, X.-M.; Ding, L.; Cui, C.-L.; Liu, S.-F.; Lu, H.Y. 2010: Highly sensitive and selective turn-on fluorescent chemosensor for Pb2+ and Hg2+ based on a rhodamine-phenylurea conjugate. Chemical Communications 46(21): 3765-3767
Arora, K.; Tomar, M.; Gupta, V. 2011: Highly sensitive and selective uric acid biosensor based on RF sputtered NiO thin film. Biosensors and Bioelectronics 30(1): 333-336
Zhao, C.; Wan, L.; Wang, Q.; Liu, S.; Jiao, K. 2009: Highly sensitive and selective uric acid biosensor based on direct electron transfer of hemoglobin-encapsulated chitosan-modified glassy carbon electrode. Analytical Sciences: the International Journal of the Japan Society for Analytical Chemistry 25(8): 1013-1017
Park, Y.; Apodaca, D.C.; Pullen, J.; Advincula, R.C. 2010: Highly sensitive and selective "turn-on" calcium cation sensing from a dendronic terthiophene tetraethylene glycol (TEG) molecule. Journal of Physical Chemistry. B 114(41): 13084-13094
Li, N.; Xiang, Y.; Tong, A. 2010: Highly sensitive and selective "turn-on" fluorescent chemodosimeter for Cu2+ in water via Cu2+-promoted hydrolysis of lactone moiety in coumarin. Chemical Communications 46(19): 3363-3365
Frosz, M.H.; Stefani, A.; Bang, O. 2011: Highly sensitive and simple method for refractive index sensing of liquids in microstructured optical fibers using four-wave mixing. Optics Express 19(11): 10471-10484
Zhu, J.; Wang, G.; Hao, Y.; Xie, B.; Cheng, A.Y.S. 2010: Highly sensitive and spatially resolved polyvinyl alcohol/acrylamide photopolymer for real-time holographic applications. Optics Express 18(17): 18106-18112
Honda, A.; Miyazaki, T.; Ikegami, T.; Iwamoto, J.; Yamashita, K.; Numazawa, M.; Matsuzaki, Y. 2010: Highly sensitive and specific analysis of sterol profiles in biological samples by HPLC-ESI-MS/MS. Journal of Steroid Biochemistry and Molecular Biology 121(3-5): 556-564
Sun, J.; Qin, Z.; Liu, J.; Zhang, C.; Luo, H. 2014: Highly sensitive and specific detection of histamine via the formation of a self-assembled magic number cluster with thymine by mass spectrometry. Analyst 139(12): 3154-3159
Wang, R.; Wang, Z.; Yang, H.; Wang, Y.; Deng, A. 2012: Highly sensitive and specific detection of neonicotinoid insecticide imidacloprid in environmental and food samples by a polyclonal antibody-based enzyme-linked immunosorbent assay. Journal of the Science of Food and Agriculture 92(6): 1253-1260
Macalalad, A.R.; Zody, M.C.; Charlebois, P.; Lennon, N.J.; Newman, R.M.; Malboeuf, C.M.; Ryan, E.M.; Boutwell, C.L.; Power, K.A.; Brackney, D.E.; Pesko, K.N.; Levin, J.Z.; Ebel, G.D.; Allen, T.M.; Birren, B.W.; Henn, M.R. 2012: Highly sensitive and specific detection of rare variants in mixed viral populations from massively parallel sequence data. Plos Computational Biology 8(3): E1002417
Wang, Y.; Yang, H.; Pschenitza, M.; Niessner, R.; Li, Y.; Knopp, D.; Deng, A. 2012: Highly sensitive and specific determination of mercury(II) ion in water, food and cosmetic samples with an ELISA based on a novel monoclonal antibody. Analytical and Bioanalytical Chemistry 403(9): 2519-2528
Liu, X.; He, X.; Moore, C.; Wang, G.; Coulter, C. 2009: Highly sensitive and specific liquid chromatography- tandem mass spectrometry method for testing ractopamine in cow and sheep urine. Journal of Analytical Toxicology 33(6): 289-293
Chen, J.; Lozach, J.; Garcia, E.W.; Barnes, B.; Luo, S.; Mikoulitch, I.; Zhou, L.; Schroth, G.; Fan, J.-B. 2008: Highly sensitive and specific microRNA expression profiling using BeadArray technology. Nucleic Acids Research 36(14): E87
Zhang, P.; Zhang, J.; Wang, C.; Liu, C.; Wang, H.; Li, Z. 2014: Highly sensitive and specific multiplexed microRNA quantification using size-coded ligation chain reaction. Analytical Chemistry 86(2): 1076-1082
Kalimuthu, P.; Tkac, J.; Kappler, U.; Davis, J.J.; Bernhardt, P.V. 2010: Highly sensitive and stable electrochemical sulfite biosensor incorporating a bacterial sulfite dehydrogenase. Analytical Chemistry 82(17): 7374-7379
Li, Z.; Zhang, H.; Zheng, W.; Wang, W.; Huang, H.; Wang, C.; MacDiarmid, A.G.; Wei, Y. 2008: Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers. Journal of the American Chemical Society 130(15): 5036-5037
Yu, R.; Ma, M.; Wang, L.; Xie, Q.; Cao, Z.; Jiang, X.; Yao, S. 2009: Highly sensitive and surface-renewable electrochemical quartz crystal microbalance assays of heparin and chondroitin sulfate based on their effects on the electrodeposition of neutral red. Biosensors and Bioelectronics 24(6): 1771-1776
Yang, T.; Kong, Q.; Li, Q.; Wang, X.; Chen, L.; Jiao, K. 2014: Highly sensitive and synergistic detection of guanine and adenine based on poly(xanthurenic acid)-reduced graphene oxide interface. Acs Applied Materials and Interfaces 6(14): 11032-11037
Zhan, Z.; Chen, J.; Guan, S.; Si, L.; Zhang, P. 2013: Highly sensitive and thermal stable CO gas sensor based on SnO2 modified by SiO2. Journal of Nanoscience and Nanotechnology 13(2): 1507-1510
Lin, Q.; Li, Y.; Yang, M. 2012: Highly sensitive and ultrafast response surface acoustic wave humidity sensor based on electrospun polyaniline/poly(vinyl butyral) nanofibers. Analytica Chimica Acta 748: 73-80
He, D.F.; Tachiki, M.; Itozaki, H. 2009: Highly sensitive anisotropic magnetoresistance magnetometer for Eddy-current nondestructive evaluation. Review of Scientific Instruments 80(3): 036102
Komoda, N.; Nogi, M.; Suganuma, K.; Otsuka, K. 2012: Highly sensitive antenna using inkjet overprinting with particle-free conductive inks. Acs Applied Materials and Interfaces 4(11): 5732-5736
Tian, T.; Li, X.; Cui, J.; Li, J.; Lan, Y.; Wang, C.; Zhang, M.; Wang, H.; Li, G. 2014: Highly sensitive assay for acetylcholinesterase activity and inhibition based on a specifically reactive photonic nanostructure. Acs Applied Materials and Interfaces 6(17): 15456-15465
Hernández, L.; Terradas, M.; Martín, M.; Tusell, L.; Genescà, A. 2013: Highly sensitive automated method for DNA damage assessment: gamma-H2AX foci counting and cell cycle sorting. International Journal of Molecular Sciences 14(8): 15810-15826
Zhu, L.; Takahashi, Y.; Amagai, T.; Matsushita, H. 1997: Highly sensitive automatic analysis of polycyclic aromatic hydrocarbons in indoor and outdoor air. Talanta 45(1): 113-118
Weßels, P.; Fallnich, C. 2003: Highly sensitive beam quality measurements on large-mode-area fiber amplifiers. Optics Express 11(25): 3346-3351
Liu, W.; Guo, T.; Wong, A.C.-l.; Tam, H.-Y.; He, S. 2010: Highly sensitive bending sensor based on Er3+-doped DBR fiber laser. Optics Express 18(17): 17834-17840
Mondal, K.; Ali, M.A.; Agrawal, V.V.; Malhotra, B.D.; Sharma, A. 2014: Highly sensitive biofunctionalized mesoporous electrospun TiO(2) nanofiber based interface for biosensing. Acs Applied Materials and Interfaces 6(4): 2516-2527
Schuch, A.é P.; Moraes, M.C.S.; Yagura, T.; Menck, C.F.M. 2014: Highly sensitive biological assay for determining the photoprotective efficacy of sunscreen. Environmental Science and Technology 48(19): 11584-11590
Lee, S.-W.; Lee, K.-S.; Ahn, J.; Lee, J.-J.; Kim, M.-G.; Shin, Y.-B. 2011: Highly sensitive biosensing using arrays of plasmonic au nanodisks realized by nanoimprint lithography. Acs Nano 5(2): 897-904
Wang, M.; Hiltunen, J.; Liedert, C.; Pearce, S.; Charlton, M.; Hakalahti, L.; Karioja, P.; Myllylä, R. 2012: Highly sensitive biosensor based on UV-imprinted layered polymeric-inorganic composite waveguides. Optics Express 20(18): 20309-20317
Liu, L.; Zhang, F.; Xi, F.; Lin, X. 2008: Highly sensitive biosensor based on bionanomultilayer with water-soluble multiwall carbon nanotubes for determination of phenolics. Biosensors and Bioelectronics 24(2): 306-312
Samanman, S.; Kanatharana, P.; Chotigeat, W.; Deachamag, P.; Thavarungkul, P. 2011: Highly sensitive capacitive biosensor for detecting white spot syndrome virus in shrimp pond water. Journal of Virological Methods 173(1): 75-84
Betty, C.A. 2009: Highly sensitive capacitive immunosensor based on porous silicon-polyaniline structure: Bias dependence on specificity. Biosensors and Bioelectronics 25(2): 338-343
Ijiri, S.; Todoroki, K.; Yoshida, H.; Yoshitake, T.; Nohta, H.; Yamaguchi, M. 2011: Highly sensitive capillary electrophoresis analysis of N-linked oligosaccharides in glycoproteins following fluorescence derivatization with rhodamine 110 and laser-induced fluorescence detection. Electrophoresis 32(24): 3499-3509
Kohler, I.; Schappler, J.; Rudaz, S. 2013: Highly sensitive capillary electrophoresis-mass spectrometry for rapid screening and accurate quantitation of drugs of abuse in urine. Analytica Chimica Acta 780: 101-109
Liu, Y-Ming.; Mei, L.; Liu, Y-Ying.; Zhou, M.; Huang, K-Jing.; Chen, Y-Hong.; Ren, S-Wei. 2014: Highly sensitive capillary electrophoretic immunoassay of rheumatoid factor in human serum with gold nanoparticles enhanced chemiluminescence detection. Electrophoresis 35(7): 972-977
Boero, C.; Carrara, S.; Del Vecchio, G.; Calzà, L.; De Micheli, G. 2011: Highly sensitive carbon nanotube-based sensing for lactate and glucose monitoring in cell culture. IEEE Transactions on Nanobioscience 10(1): 59-67
Yun, J-Hyung.; Kim, J.; Park, Y.Chang.; Song, J-Won.; Shin, D-Hun.; Han, C-Soo. 2009: Highly sensitive carbon nanotube-embedding gas sensors operating at atmospheric pressure. Nanotechnology 20(5): 055503
Pfäfflin, A. 2009: Highly sensitive cardiac troponin i assay leads to lowered specificity. Clinical Chemistry 55(9): 1749
Kavsak, P.A. 2011: Highly sensitive cardiac troponin T assay, cardiac disease, and mortality risk. JAMA 305(12): 1196; Author Reply 1196-7
Lippi, G.; Guidi, G.C.; Salvagno, G.L.; Impellizzeri, F.; Schena, F. 2010: Highly sensitive cardiac troponin T is not increased by strenuous eccentric exercise. American Journal of Cardiology 105(7): 1043-1044
Schnüriger, B.; Beat, S.ür.; Exadaktylos, E.; Aristomenis, E.; Sauter, T.; Thomas, S.; Buhl, D.; Daniela, B.; Zimmermann, H.; Heinz, Z. 2011: Highly sensitive cardiac troponin in blunt chest trauma: after the gathering comes the scattering?. Journal of Trauma 70(3): 766-767
Kogaki, S. 2011: Highly sensitive cardiac troponin-i in congenital heart disease. Circulation Journal: Official Journal of the Japanese Circulation Society 75(9): 2056-2057
Naik, R.M.; Srivastava, A.; Prasad, S. 2008: Highly sensitive catalytic spectrophotometric determination of ruthenium. Spectrochimica Acta. Part A Molecular and Biomolecular Spectroscopy 69(1): 193-197
Li, W.; Ge, S.; Wang, S.; Yan, M.; Ge, L.; Yu, J. 2013: Highly sensitive chemiluminescence immunoassay on chitosan membrane modified paper platform using TiO2 nanoparticles/multiwalled carbon nanotubes as label. Luminescence: the Journal of Biological and Chemical Luminescence 28(4): 496-502
Shi, C.; Ge, Y.; Gu, H.; Ma, C. 2011: Highly sensitive chemiluminescent point mutation detection by circular strand-displacement amplification reaction. Biosensors and Bioelectronics 26(12): 4697-4701
Kawai, T.; Koino, H.; Sueyoshi, K.; Kitagawa, F.; Otsuka, K. 2012: Highly sensitive chiral analysis in capillary electrophoresis with large-volume sample stacking with an electroosmotic flow pump. Journal of Chromatography. a 1246: 28-34
Liang, G.; Choi, K.; Badjah Hadj Ahmed, A.Y.; ALOthman, Z.A.; Chung, D.S. 2010: Highly sensitive chiral analysis of amino acids by in-line single drop microextraction and capillary electrophoresis with laser-induced fluorescence detection. Analytica Chimica Acta 677(1): 37-42
Fu, G.; Chen, W.; Yue, X.; Jiang, X. 2013: Highly sensitive colorimetric detection of organophosphate pesticides using copper catalyzed click chemistry. Talanta 103: 110-115
Ortiz, M.; Torréns, M.; Fragoso, A.; O'Sullivan, C.K. 2012: Highly sensitive colorimetric enzyme-linked oligonucleotide assay based on cyclodextrin-modified polymeric surfaces. Analytical and Bioanalytical Chemistry 403(1): 195-202
Zhao, S.; Xia, X.; Kong, X.; Liu, T. 1997: Highly sensitive colour-reaction of nickel with a new chromogenic reagent benzothiaxolyldiazoaminoazobenzene and its application. Talanta 45(1): 13-17
Wang, X.; Madsen, C.K. 2014: Highly sensitive compact refractive index sensor based on phase-shifted sidewall Bragg gratings in slot waveguide. Applied Optics 53(1): 96-103
Diao, X.-F.; Zhang, X.-Y.; Wang, T.-F.; Chen, S.-P.; Yang, Y.; Zhong, L. 2011: Highly sensitive computer aided diagnosis system for breast tumor based on color Doppler flow images. Journal of Medical Systems 35(5): 801-809
Lima, R.S.; Piazzetta, M.H.O.; Gobbi, A.L.; Segato, T.P.; Cabral, M.F.; Machado, S.A.S.; Carrilho, E. 2013: Highly sensitive contactless conductivity microchips based on concentric electrodes for flow analysis. Chemical Communications 49(97): 11382-11384
Mohd Azmi, M.A.; Tehrani, Z.; Lewis, R.P.; Walker, K.-A.D.; Jones, D.R.; Daniels, D.R.; Doak, S.H.; Guy, O.J. 2014: Highly sensitive covalently functionalised integrated silicon nanowire biosensor devices for detection of cancer risk biomarker. Biosensors and Bioelectronics 52: 216-224
Qi, Y.; Ma, L.; Kang, Z.; Bai, Y.; Yin, B.; Jian, S. 2014: Highly sensitive curvature sensor based on a multicladding fiber sandwiched dual no-core fibers structure. Applied Optics 53(28): 6382-6388
Shiraishi, Y.; Sumiya, S.; Hirai, T. 2011: Highly sensitive cyanide anion detection with a coumarin-spiropyran conjugate as a fluorescent receptor. Chemical Communications 47(17): 4953-4955
Bastardo, A.; Ravelo, C.; Romalde, J.ús.L. 2012: Highly sensitive detection and quantification of the pathogen Yersinia ruckeri in fish tissues by using real-time PCR. Applied Microbiology and Biotechnology 96(2): 511-520
Kinoshita, E.; Kinoshita-Kikuta, E.; Koike, T. 2013: Highly sensitive detection method for protein phosphorylation and its development as a new technique toward phosphoproteomics. Seikagaku. Journal of Japanese Biochemical Society 85(6): 447-455
Suhai, T.; Heidrich, N.G.; Dencher, N.A.; Seelert, H. 2009: Highly sensitive detection of ATPase activity in native gels. Electrophoresis 30(20): 3622-3625
Bae, S.Won.; Oh, J-Wook.; Shin, I-Soo.; Cho, M.Sun.; Kim, Y-Rae.; Kim, H.; Hong, J-In. 2010: Highly sensitive detection of DNA by electrogenerated chemiluminescence amplification using dendritic Ru(bpy)(3)(2+)-doped silica nanoparticles. Analyst 135(3): 603-607
Zagorodko, O.; Spadavecchia, J.; Serrano, A.Y.; Larroulet, I.; Pesquera, A.; Zurutuza, A.; Boukherroub, R.; Szunerits, S. 2014: Highly sensitive detection of DNA hybridization on commercialized graphene-coated surface plasmon resonance interfaces. Analytical Chemistry 86(22): 11211-11216
Ma, C.; Yeung, E.S. 2010: Highly sensitive detection of DNA phosphorylation by counting single nanoparticles. Analytical and Bioanalytical Chemistry 397(6): 2279-2284
Leone, A. 2013: Highly sensitive detection of EGFR T790M mutation in pre-TKi specimens of EGFR-mutated NSCLC: in cis, in trans, or a different clone?. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer 8(3): E26-E27
Fujita, Y.; Suda, K.; Kimura, H.; Matsumoto, K.; Arao, T.; Nagai, T.; Saijo, N.; Yatabe, Y.; Mitsudomi, T.; Nishio, K. 2012: Highly sensitive detection of EGFR T790M mutation using colony hybridization predicts favorable prognosis of patients with lung cancer harboring activating EGFR mutation. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer 7(11): 1640-1644
Loo, L.; Capobianco, J.A.; Wu, W.; Gao, X.; Shih, W.Y.; Shih, W.-H.; Pourrezaei, K.; Robinson, M.K.; Adams, G.P. 2011: Highly sensitive detection of HER2 extracellular domain in the serum of breast cancer patients by piezoelectric microcantilevers. Analytical Chemistry 83(9): 3392-3397
Wang, S.; Circu, M.L.; Zhou, H.; Figeys, D.; Aw, T.Y.; Feng, J. 2011: Highly sensitive detection of S-nitrosylated proteins by capillary gel electrophoresis with laser induced fluorescence. Journal of Chromatography. a 1218(38): 6756-6762
Jain, S.; Chattopadhyay, S.; Jackeray, R.; Abid, C.K.V.Z.; Kohli, G.S.; Singh, H. 2012: Highly sensitive detection of Salmonella typhi using surface aminated polycarbonate membrane enhanced-ELISA. Biosensors and Bioelectronics 31(1): 37-43
Li, Y.; Xu, W. 2009: Highly sensitive detection of Shigella flexneri using fluorescent silica nanoparticles. New Microbiologica 32(4): 377-383
Banada, P.P.; Chakravorty, S.; Shah, D.; Burday, M.; Mazzella, F.M.; Alland, D. 2012: Highly sensitive detection of Staphylococcus aureus directly from patient blood. Plos one 7(2): E31126
Liu, S.; Ming, J.; Lin, Y.; Wang, C.; Cheng, C.; Liu, T.; Wang, L. 2014: Highly sensitive detection of T4 polynucleotide kinase activity by coupling split DNAzyme and ligation-triggered DNAzyme cascade amplification. Biosensors and Bioelectronics 55: 225-230
Seo, S-Hwan.; Lee, Y-Ran.; Ho Jeon, J.; Hwang, Y-Rang.; Park, P-Gu.; Ahn, D-Ro.; Han, K-Cheol.; Rhie, G-Eun.; Hong, K-Jong. 2015: Highly sensitive detection of a bio-threat pathogen by gold nanoparticle-based oligonucleotide-linked immunosorbent assay. Biosensors and Bioelectronics 64: 69-73
Ma, C. 2012: Highly sensitive detection of alkaline phosphatase using molecular beacon probes based on enzymatic polymerization. Molecular and Cellular Probes 26(3): 113-115
Boyd, S.; Bertino, M.F.; Ye, D.; White, L.S.; Seashols, S.J. 2013: Highly sensitive detection of blood by surface enhanced Raman scattering. Journal of Forensic Sciences 58(3): 753-756
Grzywa, R.; Łupicka-Słowik, A.; Walczak, M.; Idzi, M.; Bobrek, K.; Boivin, S.; Gaweł, A.; Stefaniak, T.; Oleksyszyn, J.óz.; Sieńczyk, M. 2014: Highly sensitive detection of cancer antigen 15-3 using novel avian IgY antibodies. Altex 31(1): 43-52
Chung, S.; Cho, M.; Hwan Jung, J.; Seok Seo, T. 2014: Highly sensitive detection of cancer cells based on the DNA barcode assay and microcapillary electrophoretic analysis. Electrophoresis 35(10): 1504-1508
Starkey, J.R.; Makarov, N.S.; Drobizhev, M.; Rebane, A. 2012: Highly sensitive detection of cancer cells using femtosecond dual-wavelength near-IR two-photon imaging. Biomedical Optics Express 3(7): 1534-1547
Li, J.; Li, X.; Shi, X.; He, X.; Wei, W.; Ma, N.; Chen, H. 2013: Highly sensitive detection of caspase-3 activities via a nonconjugated gold nanoparticle-quantum dot pair mediated by an inner-filter effect. Acs Applied Materials and Interfaces 5(19): 9798-9802
Tseng, W.-L.; Hsu, C.-Y.; Wu, T.-H.; Huang, S.-W.; Hsieh, M.-M. 2009: Highly sensitive detection of chiral amino acids by CE based on on-line stacking techniques. Electrophoresis 30(14): 2558-2564
Chen, M.; Cai, H-Hong.; Yang, F.; Lin, D.; Yang, P-Hui.; Cai, J. 2014: Highly sensitive detection of chromium (III) ions by resonance Rayleigh scattering enhanced by gold nanoparticles. Spectrochimica Acta. Part A Molecular and Biomolecular Spectroscopy 118: 776-781
Zhu, G.; Hu, Y.; Gao, J.; Zhong, L. 2011: Highly sensitive detection of clenbuterol using competitive surface-enhanced Raman scattering immunoassay. Analytica Chimica Acta 697(1-2): 61-66
Muñoz-Jordán, J.L.; Collins, C.S.; Vergne, E.; Santiago, G.A.; Petersen, L.; Sun, W.; Linnen, J.M. 2009: Highly sensitive detection of dengue virus nucleic acid in samples from clinically ill patients. Journal of Clinical Microbiology 47(4): 927-931
Stokes, R.J.; Macaskill, A.; Dougan, J.A.; Hargreaves, P.G.; Stanford, H.M.; Smith, W.E.; Faulds, K.; Graham, D. 2007: Highly sensitive detection of dye-labelled DNA using nanostructured gold surfaces. Chemical Communications 27: 2811-2813
Von Burstin, J.; Eser, S.; Seidler, B.; Meining, A.; Bajbouj, M.; Mages, J.ör.; Lang, R.; Kind, A.J.; Schnieke, A.E.; Schmid, R.M.; Schneider, G.ün.; Saur, D. 2008: Highly sensitive detection of early-stage pancreatic cancer by multimodal near-infrared molecular imaging in living mice. International Journal of Cancer 123(9): 2138-2147
Adams, K.L.; Jena, B.Kumar.; Percival, S.J.; Zhang, B. 2011: Highly sensitive detection of exocytotic dopamine release using a gold-nanoparticle-network microelectrode. Analytical Chemistry 83(3): 920-927
Zhang, W.-H.; Zhang, W.-D.; Chen, L.-Y. 2010: Highly sensitive detection of explosive triacetone triperoxide by an In2O3 sensor. Nanotechnology 21(31): 315502
Deng, Y.; Gasilova, N.; Qiao, L.; Zhou, Y.-L.; Zhang, X.-X.; Girault, H.H. 2014: Highly sensitive detection of five typical fluoroquinolones in low-fat milk by field-enhanced sample injection-based CE in bubble cell capillary. Electrophoresis 35(23): 3355-3362
Gnedenko, O.V.; Mezentsev, Y.V.; Molnar, A.A.; Lisitsa, A.V.; Ivanov, A.S.; Archakov, A.I. 2013: Highly sensitive detection of human cardiac myoglobin using a reverse sandwich immunoassay with a gold nanoparticle-enhanced surface plasmon resonance biosensor. Analytica Chimica Acta 759: 105-109
Song, M.; Zhang, Y.; Li, T.; Wang, Z.; Yin, J.; Wang, H. 2009: Highly sensitive detection of human thrombin in serum by affinity capillary electrophoresis/laser-induced fluorescence polarization using aptamers as probes. Journal of Chromatography. a 1216(5): 873-878
Wang, J.; Gao, H.; Sun, F.; Hao, Q.; Xu, C. 2013: Highly sensitive detection of hydrogen peroxide based on nanoporous Fe₂O₃/CoO composites. Biosensors and Bioelectronics 42: 550-555
Kippert, F.; Gerloff, D.L. 2009: Highly sensitive detection of individual HEAT and ARM repeats with HHpred and COACH. Plos one 4(9): E7148
Jin, Y.; Meng, L.; Li, M.; Zhu, Z. 2010: Highly sensitive detection of melamine and its derivatives by capillary electrophoresis coupled with online preconcentration techniques. Electrophoresis 31(23-24): 3913-3920
Wang, P.; Dong, J.X.; Li, N.B.; Luo, H.Q. 2013: Highly sensitive detection of melamine based on gemini surfactant using enhanced resonance Rayleigh scattering signals. Spectrochimica Acta. Part a Molecular and Biomolecular Spectroscopy 103: 38-44
Caron, J.; Mangé, A.; Guillot, B.; Solassol, J.ér.ôm. 2009: Highly sensitive detection of melanoma based on serum proteomic profiling. Journal of Cancer Research and Clinical Oncology 135(9): 1257-1264
Ye, B-Ce.; Yin, B-Cheng. 2008: Highly sensitive detection of mercury(II) ions by fluorescence polarization enhanced by gold nanoparticles. Angewandte Chemie 47(44): 8386-8389
Ma, C.; Yeung, E.S.; Qi, S.; Han, R. 2012: Highly sensitive detection of microRNA by chemiluminescence based on enzymatic polymerization. Analytical and Bioanalytical Chemistry 402(6): 2217-2220
Voisin, V.ér.; Pilate, J.; Damman, P.; Mégret, P.; Caucheteur, C. 2014: Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors. Biosensors and Bioelectronics 51: 249-254
Nagata, H.; Itoh, T.; Baba, Y.; Ishikawa, M. 2010: Highly sensitive detection of monosaccharides on microchip electrophoresis using pH discontinuous solution system. Analytical Sciences: the International Journal of the Japan Society for Analytical Chemistry 26(7): 731-736
Özdemir, Şahin.Kaya.; Zhu, J.; Yang, X.; Peng, B.; Yilmaz, H.; He, L.; Monifi, F.; Huang, S.He.; Long, G.Lu.; Yang, L. 2014: Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proceedings of the National Academy of Sciences of the United States of America 111(37): E3836-E3844
Girschikofsky, M.; Rosenberger, M.; Belle, S.; Brutschy, M.; Waldvogel, S.R.; Hellmann, R. 2012: Highly sensitive detection of naphthalene in solvent vapor using a functionalized PBG refractive index sensor. Sensors 12(2): 2018-2025
Saito, S.; Sato, Y.; Haraga, T.; Nakano, Y.; Asai, S.; Kameo, Y.; Takahashi, K.; Shibukawa, M. 2012: Highly sensitive detection of neodymium ion in small amount of spent nuclear fuel samples using novel fluorescent macrocyclic hexadentate polyaminocarboxylate probe in capillary electrophoresis-laser-induced fluorescence detection. Journal of Chromatography. a 1232: 152-157
Awane, T.; Fukushima, Y.; Matsuo, T.; Matsuoka, S.; Murakami, Y.; Miwa, S. 2011: Highly sensitive detection of net hydrogen charged into austenitic stainless steel with secondary ion mass spectrometry. Analytical Chemistry 83(7): 2667-2676
Barry, S.; Dawson, K.; Correa, E.; Goodacre, R.; O'Riordan, A. 2013: Highly sensitive detection of nitroaromatic explosives at discrete nanowire arrays. Faraday Discussions 164: 283-293
Long, Y.; Chen, H.; Wang, H.; Peng, Z.; Yang, Y.; Zhang, G.; Li, N.; Liu, F.; Pei, J. 2012: Highly sensitive detection of nitroaromatic explosives using an electrospun nanofibrous sensor based on a novel fluorescent conjugated polymer. Analytica Chimica Acta 744: 82-91
Chen, D.; Wang, J.; Xu, Y.; Li, D.; Zhang, L.; Li, Z. 2013: Highly sensitive detection of organophosphorus pesticides by acetylcholinesterase-coated thin film bulk acoustic resonator mass-loading sensor. Biosensors and Bioelectronics 41: 163-167
Schappler, J.; Staub, A.; Veuthey, J.-L.; Rudaz, S. 2008: Highly sensitive detection of pharmaceutical compounds in biological fluids using capillary electrophoresis coupled with laser-induced native fluorescence. Journal of Chromatography. a 1204(2): 183-190
Ziem, F.C.; Götz, N.S.; Zappe, A.; Steinert, S.; Wrachtrup, J.ör. 2013: Highly sensitive detection of physiological spins in a microfluidic device. Nano Letters 13(9): 4093-4098
Ruslinda, A.R.; Penmatsa, V.; Ishii, Y.; Tajima, S.; Kawarada, H. 2012: Highly sensitive detection of platelet-derived growth factor on a functionalized diamond surface using aptamer sandwich design. Analyst 137(7): 1692-1697
Zhou, X.; Duan, R.; Xing, D. 2012: Highly sensitive detection of protein and small molecules based on aptamer-modified electrochemiluminescence nanoprobe. Analyst 137(8): 1963-1969
Liu, Y.; Dong, Y.; Jauw, J.; Linman, M.J.; Cheng, Q. 2010: Highly sensitive detection of protein toxins by surface plasmon resonance with biotinylation-based inline atom transfer radical polymerization amplification. Analytical Chemistry 82(9): 3679-3685
Zhang, Z.-z.; Zhang, C.-y. 2012: Highly sensitive detection of protein with aptamer-based target-triggering two-stage amplification. Analytical Chemistry 84(3): 1623-1629
Yang, X.; Gu, C.; Qian, F.; Li, Y.; Zhang, J.Z. 2011: Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers. Analytical Chemistry 83(15): 5888-5894
Li, H.; Chen, C.-Y.; Wei, X.; Qiang, W.; Li, Z.; Cheng, Q.; Xu, D. 2012: Highly sensitive detection of proteins based on metal-enhanced fluorescence with novel silver nanostructures. Analytical Chemistry 84(20): 8656-8662
Mulla, K.; Dongare, P.; Zhou, N.; Chen, G.; Thompson, D.W.; Zhao, Y. 2011: Highly sensitive detection of saccharides under physiological conditions with click synthesized boronic acid-oligomer fluorophores. Organic and Biomolecular Chemistry 9(5): 1332-1336
Jang, K.; Park, J.; Bang, D.; Lee, S.; You, J.; Haam, S.; Na, S. 2013: Highly sensitive detection of self-aggregated single-walled carbon nanotubes using a DNA-immobilized resonator. Chemical Communications 49(77): 8635-8637
Wu, S.-H.; Nie, F.-H.; Chen, Q.-Z.; Sun, J.-J. 2011: Highly sensitive detection of silybin based on adsorptive stripping analysis at single-sided heated screen-printed carbon electrodes modified with multi-walled carbon nanotubes with direct current heating. Analytica Chimica Acta 687(1): 43-49
Gough, K.C.; Bishop, K.; Maddison, B.C. 2014: Highly sensitive detection of small ruminant bovine spongiform encephalopathy within transmissible spongiform encephalopathy mixes by serial protein misfolding cyclic amplification. Journal of Clinical Microbiology 52(11): 3863-3868
Yang, X.; Dou, Y.; Zhu, S. 2013: Highly sensitive detection of superoxide dismutase based on an immunoassay with surface-enhanced fluorescence. Analyst 138(11): 3246-3252
Li, J.-M.; Ma, W.-F.; You, L.-J.; Guo, J.; Hu, J.; Wang, C.-C. 2013: Highly sensitive detection of target ssDNA based on SERS liquid chip using suspended magnetic nanospheres as capturing substrates. Langmuir: the Acs Journal of Surfaces and Colloids 29(20): 6147-6155
Zhao, Y.; Qi, L.; Chen, F.; Zhao, Y.; Fan, C. 2013: Highly sensitive detection of telomerase activity in tumor cells by cascade isothermal signal amplification based on three-way junction and base-stacking hybridization. Biosensors and Bioelectronics 41: 764-770
Tian, T.; Peng, S.; Xiao, H.; Zhang, X.; Guo, S.; Wang, S.; Zhou, X.; Liu, S.; Zhou, X. 2013: Highly sensitive detection of telomerase based on a DNAzyme strategy. Chemical Communications 49(26): 2652-2654
Zhang, Y.; Wang, L.-j.; Zhang, C.-y. 2014: Highly sensitive detection of telomerase using a telomere-triggered isothermal exponential amplification-based DNAzyme biosensor. Chemical Communications 50(15): 1909-1911
Adlhoch, C.; Kaiser, M.; Hoehne, M.; Mas Marques, A.; Stefas, I.; Veas, F.; Ellerbrok, H. 2011: Highly sensitive detection of the group a Rotavirus using Apolipoprotein H-coated ELISA plates compared to quantitative real-time PCR. Virology Journal 8: 63
Nagamura, T.; Adachi, T.; Sasaki, K.; Kawai, H.; Chen, X-Min.; Itoh, K.; Murabayashi, M. 2005: Highly sensitive detection of transient absorption in dye-doped ultrathin polymer films by the TiO(2)/K(+) composite optical waveguide method upon pulsed laser excitation. Talanta 65(5): 1071-1077
Argun, A.A.; Banks, A.M.; Merlen, G.; Tempelman, L.A.; Becker, M.F.; Schuelke, T.; Dweik, B.M. 2013: Highly sensitive detection of urinary cadmium to assess personal exposure. Analytica Chimica Acta 773: 45-51
Liu, J.; Hu, Y.; Zhu, G.; Zhou, X.; Jia, L.; Zhang, T. 2014: Highly sensitive detection of zearalenone in feed samples using competitive surface-enhanced Raman scattering immunoassay. Journal of Agricultural and Food Chemistry 62(33): 8325-8332
Uzawa, H. 2009: Highly sensitive detection technology for biological toxins applying sugar epitopes. Yakugaku Zasshi: Journal of the Pharmaceutical Society of Japan 129(1): 93-106
Ulu, S.T.; Kel, E. 2011: Highly sensitive determination and validation of gabapentin in pharmaceutical preparations by HPLC with 4-fluoro-7-nitrobenzofurazan derivatization and fluorescence detection. Journal of Chromatographic Science 49(6): 417-421
Gumuscu, B.; Erdogan, Z.; Guler, M.O.; Tekinay, T. 2014: Highly sensitive determination of 2,4,6-trinitrotoluene and related byproducts using a diol functionalized column for high performance liquid chromatography. Plos one 9(6): E99230
Borova, V.L.; Maragou, N.C.; Gago-Ferrero, P.; Pistos, C.; Thomaidis, N.S. 2014: Highly sensitive determination of 68 psychoactive pharmaceuticals, illicit drugs, and related human metabolites in wastewater by liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry 406(17): 4273-4285
Farnik, H.; El-Duweik, J.; Welsch, C.; Sarrazin, C.; Lötsch, J.ör.; Zeuzem, S.; Geisslinger, G.; Schmidt, H. 2009: Highly sensitive determination of HCV protease inhibitors boceprevir (SCH 503034) and telaprevir (VX 950) in human plasma by LC-MS/MS. Journal of Chromatography. B Analytical Technologies in the Biomedical and Life Sciences 877(31): 4001-4006
Tang, J.; Shao, B.; Liu, Y.; Liu, H.; Ji, H.; Zhu, D.; Wu, L. 2010: Highly sensitive determination of Schisandrin and Schisandrin B in plasma of rats after administration of Wurenchun (Fructus Schisandrae Chinensis Extracts) preparations by LC-ESI-MS/MS. Biomedical Chromatography: Bmc 24(6): 675-681
Ueda, M.; Teshima, N.; Sakai, T.; Joichi, Y.; Motomizu, S. 2010: Highly sensitive determination of cadmium and lead in leached solutions from ceramic ware by graphite furnace atomic absorption spectrometry coupled with sequential injection-based solid phase extraction method. Analytical Sciences: the International Journal of the Japan Society for Analytical Chemistry 26(5): 597-602
Wonsawat, W.; Dungchai, W.; Motomizu, S.; Chuanuwatanakul, S.; Chailapakul, O. 2012: Highly sensitive determination of cadmium and lead using a low-cost electrochemical flow-through cell based on a carbon paste electrode. Analytical Sciences: the International Journal of the Japan Society for Analytical Chemistry 28(2): 141-146
Ya, Y.; Mo, L.; Wang, T.; Fan, Y.; Liao, J.; Chen, Z.; Manoj, K.S.; Fang, F.; Li, C.; Liang, J. 2012: Highly sensitive determination of capsaicin using a carbon paste electrode modified with amino-functionalized mesoporous silica. Colloids and Surfaces. B Biointerfaces 95: 90-95
Meng, L.; Fang, Z.; Lin, J.; Li, M.; Zhu, Z. 2014: Highly sensitive determination of copper in Hela cell using capillary electrophoresis combined with a simple cell extraction treatment. Talanta 121: 205-209
Liu, N.-N.; Song, S.; Li, D.-M.; Zheng, Y.-S. 2012: Highly sensitive determination of enantiomeric composition of chiral acids based on aggregation-induced emission. Chemical Communications 48(40): 4908-4910
Watabe, S.; Sakamoto, Y.; Morikawa, M.; Okada, R.; Miura, T.; Ito, E. 2011: Highly sensitive determination of hydrogen peroxide and glucose by fluorescence correlation spectroscopy. Plos one 6(8): E22955
Ding, L.; Zhang, Z.; Li, X.; Su, J. 2013: Highly sensitive determination of low-level water content in organic solvents using novel solvatochromic dyes based on thioxanthone. Chemical Communications 49(66): 7319-7321
Wei, Y.; Luo, L.; Ding, Y.; Si, X.; Ning, Y. 2014: Highly sensitive determination of methotrexate at poly (l-lysine) modified electrode in the presence of sodium dodecyl benzene sulfonate. Bioelectrochemistry 98: 70-75
Cheng, Y.; Zhang, X.; Li, Z.; Jiao, X.; Wang, Y.; Zhang, Y. 2009: Highly sensitive determination of microRNA using target-primed and branched rolling-circle amplification. Angewandte Chemie 48(18): 3268-3272
Wang, S.; Tang, S.; Sun, Y.; Wang, H.; Wang, X.; Zhang, H.; Wang, Z. 2014: Highly sensitive determination of new metabolite in rat plasma after oral administration of swertiamarin by liquid chromatography/time of flight mass spectrometry following picolinoyl derivatization. Biomedical Chromatography: Bmc 28(7): 939-946
Zhang, H.-X.; Chen, J.-B.; Guo, X.-F.; Wang, H.; Zhang, H.-S. 2013: Highly sensitive determination of nitric oxide in biologic samples by a near-infrared BODIPY-based fluorescent probe coupled with high-performance liquid chromatography. Talanta 116: 335-342
Barco-Bonilla, N.; Plaza-Bolaños, P.; Tarifa, N.M.V.; Romero-González, R.; Vidal, J.é L.M.ín.; Frenich, A.G. 2014: Highly sensitive determination of polybrominated diphenyl ethers in surface water by GC coupled to high-resolution MS according to the EU Water Directive 2008/105/EC. Journal of Separation Science 37(1-2): 69-76
Krupadam, R.J.; Bhagat, B.; Khan, M.S. 2010: Highly sensitive determination of polycyclic aromatic hydrocarbons in ambient air dust by gas chromatography-mass spectrometry after molecularly imprinted polymer extraction. Analytical and Bioanalytical Chemistry 397(7): 3097-3106
Shen, R.; Guo, L.; Zhang, Z.; Meng, Q.; Xie, J. 2010: Highly sensitive determination of recombinant human erythropoietin-alpha in aptamer-based affinity probe capillary electrophoresis with laser-induced fluorescence detection. Journal of Chromatography. a 1217(35): 5635-5641
Li, X.; Ma, K.; Lu, H.; Xu, B.; Wang, Z.; Zhang, Y.; Gao, Y.; Yan, L.; Tian, W. 2014: Highly sensitive determination of ssDNA and real-time sensing of nuclease activity and inhibition based on the controlled self-assembly of a 9,10-distyrylanthracene probe. Analytical and Bioanalytical Chemistry 406(3): 851-858
Zhao, R.-S.; Wang, X.; Yuan, J.-P. 2010: Highly sensitive determination of tetrabromobisphenol a and bisphenol a in environmental water samples by solid-phase extraction and liquid chromatography-tandem mass spectrometry. Journal of Separation Science 33(11): 1652-1657
Rabe, T.; Görrn, P.; Lehnhardt, M.; Tilgner, M.; Riedl, T.; Kowalsky, W. 2009: Highly sensitive determination of the polaron-induced optical absorption of organic charge-transport materials. Physical Review Letters 102(13): 137401
Chaiyo, S.; Chailapakul, O.; Sakai, T.; Teshima, N.; Siangproh, W. 2013: Highly sensitive determination of trace copper in food by adsorptive stripping voltammetry in the presence of 1,10-phenanthroline. Talanta 108: 1-6
Revin, S.B.; John, S.A. 2012: Highly sensitive determination of uric acid in the presence of major interferents using a conducting polymer film modified electrode. Bioelectrochemistry 88: 22-29
Bonnefond, A.él.; Philippe, J.; Durand, E.; Muller, J.; Saeed, S.; Arslan, M.; Martínez, R.; De Graeve, F.; Dhennin, V.ér.; Rabearivelo, I.; Polak, M.; Cavé, H.él.èn.; Castaño, L.; Vaxillaire, M.; Mandel, J.-L.; Sand, O.; Froguel, P. 2014: Highly sensitive diagnosis of 43 monogenic forms of diabetes or obesity through one-step PCR-based enrichment in combination with next-generation sequencing. Diabetes Care 37(2): 460-467
Joo, J.; Kwon, D.; Yim, C.; Jeon, S. 2012: Highly sensitive diagnostic assay for the detection of protein biomarkers using microresonators and multifunctional nanoparticles. Acs Nano 6(5): 4375-4381
Dai, D. 2009: Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators. Optics Express 17(26): 23817-23822
Pupeza, I.; Gu, X.; Fill, E.; Eidam, T.; Limpert, J.; Tünnermann, A.; Krausz, F.; Udem, T. 2010: Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral interferometry. Optics Express 18(25): 26184-26195
Kuralay, F.; Campuzano, S.; Haake, D.A.; Wang, J. 2011: Highly sensitive disposable nucleic acid biosensors for direct bioelectronic detection in raw biological samples. Talanta 85(3): 1330-1337
Tang, H.; Lin, P.; Chan, H.L.W.; Yan, F. 2011: Highly sensitive dopamine biosensors based on organic electrochemical transistors. Biosensors and Bioelectronics 26(11): 4559-4563
Saha, S.K.; Ghosh, K.R.; Gao, J.P.; Wang, Z.Y. 2014: Highly sensitive dual-mode fluorescence detection of lead ion in water using aggregation-induced emissive polymers. Macromolecular Rapid Communications 35(18): 1592-1597
Lissak, B.; Arie, A.; Tur, M. 1998: Highly sensitive dynamic strain measurements by locking lasers to fiber Bragg gratings. Optics Letters 23(24): 1930-1932
Dubey, G.; Rosei, F.; Lopinski, G.P. 2011: Highly sensitive electrical detection of TCNE on chemically passivated silicon-on-insulator. Chemical Communications 47(38): 10593-10595
Zhang, J.; Lei, J.; Pan, R.; Xue, Y.; Ju, H. 2010: Highly sensitive electrocatalytic biosensing of hypoxanthine based on functionalization of graphene sheets with water-soluble conducting graft copolymer. Biosensors and Bioelectronics 26(2): 371-376
Zhao, J.; Hu, S.; Zhong, W.; Wu, J.; Shen, Z.; Chen, Z.; Li, G. 2014: Highly sensitive electrochemical aptasensor based on a ligase-assisted exonuclease III-catalyzed degradation reaction. Acs Applied Materials and Interfaces 6(10): 7070-7075
Salimi, A.; Khezrian, S.; Hallaj, R.; Vaziry, A. 2014: Highly sensitive electrochemical aptasensor for immunoglobulin e detection based on sandwich assay using enzyme-linked aptamer. Analytical Biochemistry 466: 89-97
Ngoensawat, U.; Rijiravanich, P.; Somasundrum, M.; Surareungchai, W. 2014: Highly sensitive electrochemical detection of DNA hybridisation by coupling the chemical reduction of a redox label to the electrode reaction of a solution phase mediator. Analyst 139(22): 5740-5746
Jiang, B.; Wang, M.; Chen, Y.; Xie, J.; Xiang, Y. 2012: Highly sensitive electrochemical detection of cocaine on graphene/AuNP modified electrode via catalytic redox-recycling amplification. Biosensors and Bioelectronics 32(1): 305-308
Li, Y.; Liu, B.; Li, X.; Wei, Q. 2010: Highly sensitive electrochemical detection of human telomerase activity based on bio-barcode method. Biosensors and Bioelectronics 25(11): 2543-2547
Zhang, S.; Zheng, F.; Wu, Z.; Shen, G.; Yu, R. 2008: Highly sensitive electrochemical detection of immunospecies based on combination of Fc label and PPD film/gold nanoparticle amplification. Biosensors and Bioelectronics 24(1): 129-135
Umasankar, Y.; Ramasamy, R.P. 2013: Highly sensitive electrochemical detection of methyl salicylate using electroactive gold nanoparticles. Analyst 138(21): 6623-6631
Kim, T.-H.; El-Said, W.A.; Choi, J.-W. 2012: Highly sensitive electrochemical detection of potential cytotoxicity of CdSe/ZnS quantum dots using neural cell chip. Biosensors and Bioelectronics 32(1): 266-272
Nam, E.Ji.; Kim, E.Ji.; Wark, A.W.; Rho, S.; Kim, H.; Lee, H.Jin. 2012: Highly sensitive electrochemical detection of proteins using aptamer-coated gold nanoparticles and surface enzyme reactions. Analyst 137(9): 2011-2016
Kannan, P.; Tiong, H.Y.; Kim, D.-H. 2012: Highly sensitive electrochemical determination of neutrophil gelatinase-associated lipocalin for acute kidney injury. Biosensors and Bioelectronics 31(1): 32-36
Li, Y.; Hong, M.; Lin, Y.; Bin, Q.; Lin, Z.; Cai, Z.; Chen, G. 2012: Highly sensitive electrochemical immunoassay for H1N1 influenza virus based on copper-mediated amplification. Chemical Communications 48(52): 6562-6564
Yang, T.; Zhou, N.; Li, Q.; Guan, Q.; Zhang, W.; Jiao, K. 2012: Highly sensitive electrochemical impedance sensing of PEP gene based on integrated Au-Pt alloy nanoparticles and polytyramine. Colloids and Surfaces. B Biointerfaces 97: 150-154
Zhou, N.; Yang, T.; Jiang, C.; Du, M.; Jiao, K. 2009: Highly sensitive electrochemical impedance spectroscopic detection of DNA hybridization based on Au(nano)-CNT/PAN(nano) films. Talanta 77(3): 1021-1026
Bai, L.; Yuan, R.; Chai, Y.; Yuan, Y.; Mao, L.; Zhuo, Y. 2011: Highly sensitive electrochemical label-free aptasensor based on dual electrocatalytic amplification of Pt-AuNPs and HRP. Analyst 136(9): 1840-1845
Deng, H.; Yang, X.; Yeo, S.P.X.; Gao, Z. 2014: Highly sensitive electrochemical methyltransferase activity assay. Analytical Chemistry 86(4): 2117-2123
Zhu, Z.; Su, Y.; Li, J.; Li, D.; Zhang, J.; Song, S.; Zhao, Y.; Li, G.; Fan, C. 2009: Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Analytical Chemistry 81(18): 7660-7666
Zhu, Y.; Zeng, G.-m.; Zhang, Y.; Tang, L.; Chen, J.; Cheng, M.; Zhang, L.-h.; He, L.; Guo, Y.; He, X.-x.; Lai, M.-y.; He, Y.-b. 2014: Highly sensitive electrochemical sensor using a MWCNTs/GNPs-modified electrode for lead (II) detection based on Pb(2+)-induced G-rich DNA conformation. Analyst 139(19): 5014-5020
Shen, G.; Zhang, Y. 2010: Highly sensitive electrochemical stripping detection of hepatitis B surface antigen based on copper-enhanced gold nanoparticle tags and magnetic nanoparticles. Analytica Chimica Acta 674(1): 27-31
Zhang, J.; Chen, S.; Tan, X.; Zhong, X.; Yuan, D.; Cheng, Y. 2014: Highly sensitive electrochemiluminescence biosensors for cholesterol detection based on mesoporous magnetic core-shell microspheres. Biotechnology Letters 36(9): 1835-1841
Zhou, H.; Liu, J.; Xu, J-Juan.; Chen, H-Yuan. 2011: Highly sensitive electrochemiluminescence detection of single-nucleotide polymorphisms based on isothermal cycle-assisted triple-stem probe with dual-nanoparticle label. Analytical Chemistry 83(21): 8320-8328
Rao, H.; Zhang, J.; Li, J. 2014: Highly sensitive electrochemiluminescence determination of etamsylate using a low-cost electrochemical flow-through cell based on a tris(2, 2'-bipyridyl)ruthenium(II)-Nafion-modified carbon paste electrode. Luminescence: the Journal of Biological and Chemical Luminescence 29(7): 784-790
Huang, R.; Wang, L.-R.; Guo, L.-H. 2010: Highly sensitive electrochemiluminescence displacement method for the study of DNA/small molecule binding interactions. Analytica Chimica Acta 676(1-2): 41-45
Zhu, X.; Zhang, Y.; Yang, W.; Liu, Q.; Lin, Z.; Qiu, B.; Chen, G. 2011: Highly sensitive electrochemiluminescent biosensor for adenosine based on structure-switching of aptamer. Analytica Chimica Acta 684(1-2): 121-125
Wu, L.; Wang, J.; Ren, J.; Li, W.; Qu, X. 2013: Highly sensitive electrochemiluminescent cytosensing using carbon nanodot@Ag hybrid material and graphene for dual signal amplification. Chemical Communications 49(50): 5675-5677
Zamolo, V.A.; Valenti, G.; Venturelli, E.; Chaloin, O.; Marcaccio, M.; Boscolo, S.; Castagnola, V.; Sosa, S.; Berti, F.; Fontanive, G.; Poli, M.; Tubaro, A.; Bianco, A.; Paolucci, F.; Prato, M. 2012: Highly sensitive electrochemiluminescent nanobiosensor for the detection of palytoxin. Acs Nano 6(9): 7989-7997
Liang, R.-P.; Xiang, C.-Y.; Zhao, H.-F.; Qiu, J.-D. 2014: Highly sensitive electrogenerated chemiluminescence biosensor in profiling protein kinase activity and inhibition using a multifunctional nanoprobe. Analytica Chimica Acta 812: 33-40
Xu, S.; Liu, Y.; Wang, T.; Li, J. 2010: Highly sensitive electrogenerated chemiluminescence biosensor in profiling protein kinase activity and inhibition using gold nanoparticle as signal transduction probes. Analytical Chemistry 82(22): 9566-9572
Takei, K.; Yu, Z.; Zheng, M.; Ota, H.; Takahashi, T.; Javey, A. 2014: Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films. Proceedings of the National Academy of Sciences of the United States of America 111(5): 1703-1707
Gondal, M.A.; Yamani, Z.H. 2007: Highly sensitive electronically modulated photoacoustic spectrometer for ozone detection. Applied Optics 46(29): 7083-7090
Kitano, A.; Iiduka, A.; Yamamoto, T.; Ukita, Y.; Tamiya, E.; Takamura, Y. 2011: Highly sensitive elemental analysis for Cd and Pb by liquid electrode plasma atomic emission spectrometry with quartz glass chip and sample flow. Analytical Chemistry 83(24): 9424-9430
Huang, T.; Jia, C.-P.; Jun-Yang; Sun, W.-J.; Wang, W.-T.; Zhang, H.-L.; Cong, H.; Jing, F.-X.; Mao, H.-J.; Jin, Q.-H.; Zhang, Z.; Chen, Y.-J.; Li, G.; Mao, G.-X.; Zhao, J.-L. 2014: Highly sensitive enumeration of circulating tumor cells in lung cancer patients using a size-based filtration microfluidic chip. Biosensors and Bioelectronics 51: 213-218
Kondoh, M.; Fukada, K.; Shimada, T.; Kitamura, Y.; Yasueda, H.; Enomoto, T. 2010: Highly sensitive enzyme-linked immunosorbent assay for the quantification of allergens from Dermatophagoides, DER p 1 and DER f 1. Arerugi 59(2): 109-116
Rahman, M.M.; Jamal, A.; Khan, S.B.; Faisal, M. 2011: Highly sensitive ethanol chemical sensor based on Ni-doped SnO₂ nanostructure materials. Biosensors and Bioelectronics 28(1): 127-134
Nováková, L.; Gottvald, T.áš; Vlčková, H.; Trejtnar, F.še.; Mandíková, J.; Solich, P. 2012: Highly sensitive fast determination of entecavir in rat urine by means of hydrophilic interaction chromatography-ultra-high-performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography. a 1259: 237-243
Brehm, K.E.; Ferris, N.P.; Lenk, M.; Riebe, R.; Haas, B. 2009: Highly sensitive fetal goat tongue cell line for detection and isolation of foot-and-mouth disease virus. Journal of Clinical Microbiology 47(10): 3156-3160
Zhou, W.; Wong, W.C.; Chan, C.C.; Shao, L.-Y.; Dong, X. 2011: Highly sensitive fiber loop ringdown strain sensor using photonic crystal fiber interferometer. Applied Optics 50(19): 3087-3092
Qi, Z.; Huang, H.; Cao, T.; Liu, P.; Tang, Z.; Qu, B. 2013: Highly sensitive fiber pressure sensor based on off-center diaphragm reflection. Applied Optics 52(18): 4223-4227
Drygin, Y.F.; Blintsov, A.N.; Grigorenko, V.G.; Andreeva, I.P.; Osipov, A.P.; Varitzev, Y.A.; Uskov, A.I.; Kravchenko, D.V.; Atabekov, J.G. 2012: Highly sensitive field test lateral flow immunodiagnostics of PVX infection. Applied Microbiology and Biotechnology 93(1): 179-189
Ito, K.; Fujishima, A. 1988: Highly sensitive flash photolysis with optical waveguides: photodeposition of silver onto particulate TiO2 from solution. Journal of the American Chemical Society 110(18): 6267-6269
Wu, L.; Zhang, X.; Ju, H. 2007: Highly sensitive flow injection detection of hydrogen peroxide with high throughput using a carbon nanofiber-modified electrode. Analyst 132(5): 406-408
Kanwal, S.; Fu, X.; Su, X. 2009: Highly sensitive flow-injection chemiluminescence determination of pyrogallol compounds. Spectrochimica Acta. Part a Molecular and Biomolecular Spectroscopy 74(5): 1046-1049
Zeng, Q.; Ye, L.; Ma, L.; Yin, W.; Li, T.; Liang, A.; Jiang, Z. 2015: Highly sensitive fluorescence and SERS detection of azide through a simple click reaction of 8-chloroquinoline and phenylacetylene. Luminescence: the Journal of Biological and Chemical Luminescence 30(3): 303-308
Tao, M.; Zhang, J.; Jin, Y.; Li, B. 2014: Highly sensitive fluorescence assay of T4 polynucleotide kinase activity and inhibition via enzyme-assisted signal amplification. Analytical Biochemistry 464: 63-69
Yasuda, M.; Akimoto, T. 2012: Highly sensitive fluorescence detection of avidin/streptavidin with an optical interference mirror slide. Analytical Sciences: the International Journal of the Japan Society for Analytical Chemistry 28(10): 947-952
Liu, S.; Cheng, C.; Liu, T.; Wang, L.; Gong, H.; Li, F. 2015: Highly sensitive fluorescence detection of target DNA by coupling exonuclease-assisted cascade target recycling and DNAzyme amplification. Biosensors and Bioelectronics 63: 99-104
Ryu, G.; Huang, J.; Hofmann, O.; Walshe, C.A.; Sze, J.Y.Y.; McClean, G.D.; Mosley, A.; Rattle, S.J.; deMello, J.C.; deMello, A.J.; Bradley, D.D.C. 2011: Highly sensitive fluorescence detection system for microfluidic lab-on-a-chip. Lab on a Chip 11(9): 1664-1670
Suah, F.B.M.; Ahmad, M.; Heng, L.Y. 2014: Highly sensitive fluorescence optode based on polymer inclusion membranes for determination of Al(III) ions. Journal of Fluorescence 24(4): 1235-1243
Zhou, P.; Meng, Q.; He, G.; Wu, H.; Duan, C.; Quan, X. 2009: Highly sensitive fluorescence probe based on functional SBA-15 for selective detection of Hg2+ in aqueous media. Journal of Environmental Monitoring: Jem 11(3): 648-653
Zhang, Y.; Zeng, G.-M.; Tang, L.; Niu, C.-G.; Pang, Y.; Chen, L.-J.; Feng, C.-L.; Huang, G.-H. 2010: Highly sensitive fluorescence quantification of picloram using immunorecognition liposome. Talanta 83(1): 210-215
Xiang, D.; Zhai, K.; Xiang, W.; Wang, L. 2014: Highly sensitive fluorescence quantitative detection of specific DNA sequences with molecular beacons and nucleic acid dye SYBR Green i. Talanta 129: 249-253
Sokkalingam, P.; Lee, C-Hee. 2011: Highly sensitive fluorescence "turn-on" indicator for fluoride anion with remarkable selectivity in organic and aqueous media. Journal of Organic Chemistry 76(10): 3820-3828
Han, E.; Ding, L.; Ju, H. 2011: Highly sensitive fluorescent analysis of dynamic glycan expression on living cells using glyconanoparticles and functionalized quantum dots. Analytical Chemistry 83(18): 7006-7012
Qu, F.; Li, N.B.; Luo, H.Q. 2013: Highly sensitive fluorescent and colorimetric pH sensor based on polyethylenimine-capped silver nanoclusters. Langmuir: the Acs Journal of Surfaces and Colloids 29(4): 1199-1205
Lv, Z.; Liu, J.; Zhou, Y.; Guan, Z.; Yang, S.; Li, C.; Chen, A. 2013: Highly sensitive fluorescent detection of small molecules, ions, and proteins using a universal label-free aptasensor. Chemical Communications 49(48): 5465-5467
Hu, L.; Han, S.; Parveen, S.; Yuan, Y.; Zhang, L.; Xu, G. 2012: Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Biosensors and Bioelectronics 32(1): 297-299
Huang Fu, Z-Zhen.; Hao, L-Juan.; Wu, Y-Mei.; Qiao, H-Ying.; Yi, Z.; Li, X-Yan.; Chu, X. 2013: Highly sensitive fluorescent immunoassay of human immunoglobulin G based on PbS nanoparticles and DNAzyme. Analytical Sciences: the International Journal of the Japan Society for Analytical Chemistry 29(5): 499-504
Li, Y.; Hong, M.; Qiu, B.; Lin, Z.; Chen, Y.; Cai, Z.; Chen, G. 2014: Highly sensitive fluorescent immunosensor for detection of influenza virus based on Ag autocatalysis. Biosensors and Bioelectronics 54: 358-364
Mansano, F.V.; Kazaoka, R.M.A.; Ronsein, G.E.; Prado, F.M.; Genaro-Mattos, T.C.; Uemi, M.; Di Mascio, P.; Miyamoto, S. 2010: Highly sensitive fluorescent method for the detection of cholesterol aldehydes formed by ozone and singlet molecular oxygen. Analytical Chemistry 82(16): 6775-6781
Liu, J.; Liu, Z.-b.; Huang, Q.; Lin, C.-Q.; Lin, X. 2014: Highly sensitive fluorescent probe for clenbuterol hydrochloride detection based on its catalytic oxidation of eosine y by NaIO4. Journal of Fluorescence 24(5): 1495-1501
Huang, S.; Clark, R.J.; Zhu, L. 2007: Highly sensitive fluorescent probes for zinc ion based on triazolyl-containing tetradentate coordination motifs. Organic Letters 9(24): 4999-5002
Chen, Q.; Zhang, X.; Sun, Y.; Ritt, M.; Sivaramakrishnan, S.; Fan, X. 2013: Highly sensitive fluorescent protein FRET detection using optofluidic lasers. Lab on a Chip 13(14): 2679-2681
Deng, Q.; Li, Y.; Wu, J.; Liu, Y.; Fang, G.; Wang, S.; Zhang, Y. 2012: Highly sensitive fluorescent sensing for water based on poly(m-aminobenzoic acid). Chemical Communications 48(24): 3009-3011
Guo, L.; Hu, H.; Sun, R.; Chen, G. 2009: Highly sensitive fluorescent sensor for mercury ion based on photoinduced charge transfer between fluorophore and pi-stacked T-Hg(II)-T base pairs. Talanta 79(3): 775-779
Gong, Y.; Yu, C.-B.; Wang, T.-T.; Liu, X.-P.; Wu, Y.; Rao, Y.-J.; Zhang, M.-L.; Wu, H.-J.; Chen, X.-X.; Peng, G.-D. 2014: Highly sensitive force sensor based on optical microfiber asymmetrical Fabry-Perot interferometer. Optics Express 22(3): 3578-3584
Du, L.; Huang, S.; Zhuang, Q.; Jia, H.; Rockenbauer, A.; Liu, Y.; Liu, K.Jian.; Liu, Y. 2014: Highly sensitive free radical detection by nitrone-functionalized gold nanoparticles. Nanoscale 6(3): 1646-1652
Bailly, G.; Thon, R.ël.; Robilliard, C.éc. 2010: Highly sensitive frequency metrology for optical anisotropy measurements. Review of Scientific Instruments 81(3): 033105
Chan, N.Yui.; Zhao, M.; Huang, J.; Au, K.; Wong, M.Hon.; Yao, H.Man.; Lu, W.; Chen, Y.; Ong, C.Wo.; Chan, H.Lai.Wa.; Dai, J. 2014: Highly sensitive gas sensor by the LaAlO3 /SrTiO3 heterostructure with Pd nanoparticle surface modulation. Advanced Materials 26(34): 5962-5968
Kolev, S.D.; Fernandes, P.R.L.V.; Satinsky, D.; Solich, P. 2009: Highly sensitive gas-diffusion sequential injection analysis based on flow manipulation. Talanta 79(4): 1021-1025
Ma, Q.; Cui, H.; Su, X. 2009: Highly sensitive gaseous formaldehyde sensor with CdTe quantum dots multilayer films. Biosensors and Bioelectronics 25(4): 839-844
Hsu, C.-W.; Wang, G.-J. 2014: Highly sensitive glucose biosensor based on Au-Ni coaxial nanorod array having high aspect ratio. Biosensors and Bioelectronics 56: 204-209
Fu, Y.; Zou, C.; Xie, Q.; Xu, X.; Chen, C.; Deng, W.; Yao, S. 2009: Highly sensitive glucose biosensor based on one-pot biochemical preoxidation and electropolymerization of 2,5-dimercapto-1,3,4-thiadiazole in glucose oxidase-containing aqueous suspension. Journal of Physical Chemistry. B 113(5): 1332-1340
Zargoosh, K.; Chaichi, M.Javad.; Shamsipur, M.; Hossienkhani, S.; Asghari, S.; Qandalee, M. 2012: Highly sensitive glucose biosensor based on the effective immobilization of glucose oxidase/carbon-nanotube and gold nanoparticle in nafion film and peroxyoxalate chemiluminescence reaction of a new fluorophore. Talanta 93: 37-43
Zhai, D.; Liu, B.; Shi, Y.; Pan, L.; Wang, Y.; Li, W.; Zhang, R.; Yu, G. 2013: Highly sensitive glucose sensor based on pt nanoparticle/polyaniline hydrogel heterostructures. Acs Nano 7(4): 3540-3546
Kim, Y-Rae.; Mahajan, R.Kumar.; Kim, J.Seung.; Kim, H. 2010: Highly sensitive gold nanoparticle-based colorimetric sensing of mercury(II) through simple ligand exchange reaction in aqueous media. Acs Applied Materials and Interfaces 2(1): 292-295
Wu, L.; Chu, H.S.; Koh, W.S.; Li, E.P. 2010: Highly sensitive graphene biosensors based on surface plasmon resonance. Optics Express 18(14): 14395-14400
Zhang, Y.; Bai, X.; Wang, X.; Shiu, K.-K.; Zhu, Y.; Jiang, H. 2014: Highly sensitive graphene-Pt nanocomposites amperometric biosensor and its application in living cell H2O2 detection. Analytical Chemistry 86(19): 9459-9465
Yuk, J.S.; Guignon, E.F.; Lynes, M.A. 2013: Highly sensitive grating coupler-based surface plasmon-coupled emission (SPCE) biosensor for immunoassay. Analyst 138(9): 2576-2582
Tanaka, A.; Yamazaki, M.; Saito, M.; Oh-I, T.; Watanabe, Y.; Tsuboi, R. 2012: Highly sensitive high-pressure liquid chromatography with ultraviolet light method detected the reduction of serum nitrite/nitrate levels after cold exposure in patients with Raynaud's phenomenon. Journal of Dermatology 39(10): 889-890
Kojima, M.; Sakakibara, H. 2012: Highly sensitive high-throughput profiling of six phytohormones using MS-probe modification and liquid chromatography-tandem mass spectrometry. Methods in Molecular Biology 918: 151-164
Luo, J.; Cui, X.; Liu, W.; Li, B. 2014: Highly sensitive homogenous chemiluminescence immunoassay using gold nanoparticles as label. Spectrochimica Acta. Part A Molecular and Biomolecular Spectroscopy 131: 243-248
Tang, L.; Dong, C.; Ren, J. 2010: Highly sensitive homogenous immunoassay of cancer biomarker using silver nanoparticles enhanced fluorescence correlation spectroscopy. Talanta 81(4-5): 1560-1567
Ahmad, R.; Tripathy, N.; Jung, D.-U.-J.; Hahn, Y.-B. 2014: Highly sensitive hydrazine chemical sensor based on ZnO nanorods field-effect transistor. Chemical Communications 50(15): 1890-1893
Mehta, S.K.; Khushboo; Umar, A. 2011: Highly sensitive hydrazine chemical sensor based on mono-dispersed rapidly synthesized PEG-coated ZnS nanoparticles. Talanta 85(5): 2411-2416
Ameen, S.; Akhtar, M.S.; Shin, H.S. 2012: Highly sensitive hydrazine chemical sensor fabricated by modified electrode of vertically aligned zinc oxide nanorods. Talanta 100: 377-383
Huh, J.; Park, J.; Kim, G.T.; Park, J.Y. 2011: Highly sensitive hydrogen detection of catalyst-free ZnO nanorod networks suspended by lithography-assisted growth. Nanotechnology 22(8): 085502
Zdansky, K. 2011: Highly sensitive hydrogen sensor based on graphite-InP or graphite-GaN Schottky barrier with electrophoretically deposited Pd nanoparticles. Nanoscale Research Letters 6: 490
Moon, C.H.; Zhang, M.; Myung, N.V.; Haberer, E.D. 2014: Highly sensitive hydrogen sulfide (H₂S) gas sensors from viral-templated nanocrystalline gold nanowires. Nanotechnology 25(13): 135205
Zhao, J.; Jin, J.; Wu, C.; Jiang, H.; Zhou, Y.; Zuo, J.; Wang, X. 2010: Highly sensitive identification of cancer cells by combining the new tetrathiafulvalene derivative with a β-cyclodextrin/multi-walled carbon nanotubes modified GCE. Analyst 135(11): 2965-2969
Kobayashi, M. 2014: Highly sensitive imaging for ultra-weak photon emission from living organisms. Journal of Photochemistry and Photobiology. B Biology 139: 34-38
Zhi, Z.; Jung, Y.; Jia, Y.; An, L.; Wang, R.K. 2011: Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography. Biomedical Optics Express 2(5): 1059-1068
Jose, J.; Park, M.; Pyun, J.-C. 2010: Highly sensitive immunoassay based on E. coli with autodisplayed Z-domain. Analytica Chimica Acta 667(1-2): 113-118
Song, C.; Wang, Z.; Zhang, R.; Yang, J.; Tan, X.; Cui, Y. 2009: Highly sensitive immunoassay based on Raman reporter-labeled immuno-Au aggregates and SERS-active immune substrate. Biosensors and Bioelectronics 25(4): 826-831
Shu, L.; Zhou, J.; Yuan, X.; Petti, L.; Chen, J.; Jia, Z.; Mormile, P. 2014: Highly sensitive immunoassay based on SERS using nano-au immune probes and a nano-Ag immune substrate. Talanta 123: 161-168
Fridley, G.E.; Le, H.; Yager, P. 2014: Highly sensitive immunoassay based on controlled rehydration of patterned reagents in a 2-dimensional paper network. Analytical Chemistry 86(13): 6447-6453
Liu, R.; Liu, X.; Tang, Y.; Wu, L.; Hou, X.; Lv, Y. 2011: Highly sensitive immunoassay based on immunogold-silver amplification and inductively coupled plasma mass spectrometric detection. Analytical Chemistry 83(6): 2330-2336
Han, H.; Pyun, J.-C.; Yoo, H.; Seo, H.S.; Jung, B.H.; Yoo, Y.S.; Woo, K.; Kang, M.-J. 2014: Highly sensitive immunoassay for the diagnosis of acute myocardial infarction using silica spheres encapsulating a quantum dot layer. Analytical Chemistry 86(20): 10157-10163
Jiang, J.; Zhao, S.; Huang, Y.; Qin, G.; Ye, F. 2013: Highly sensitive immunoassay of carcinoembryonic antigen by capillary electrophoresis with gold nanoparticles amplified chemiluminescence detection. Journal of Chromatography. a 1282: 161-166
Salimi, A.; Kavosi, B.; Fathi, F.; Hallaj, R. 2013: Highly sensitive immunosensing of prostate-specific antigen based on ionic liquid-carbon nanotubes modified electrode: application as cancer biomarker for prostate biopsies. Biosensors and Bioelectronics 42: 439-446
Liao, K.-P.; Sung, K.-B. 2008: Highly sensitive immunosensor using a nanofluidic preconcentrator. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2008: 3368-3370
Qian, J.; Jiang, L.; Yang, X.; Yan, Y.; Mao, H.; Wang, K. 2014: Highly sensitive impedimetric aptasensor based on covalent binding of gold nanoparticles on reduced graphene oxide with good dispersity and high density. Analyst 139(21): 5587-5593
Yang, F.; Han, J.; Zhuo, Y.; Yang, Z.; Chai, Y.; Yuan, R. 2014: Highly sensitive impedimetric immunosensor based on single-walled carbon nanohorns as labels and bienzyme biocatalyzed precipitation as enhancer for cancer biomarker detection. Biosensors and Bioelectronics 55: 360-365
Cai, W.; Tang, X.; Sun, B.; Yang, L. 2014: Highly sensitive in situ monitoring of catalytic reactions by surface enhancement Raman spectroscopy on multifunctional Fe₃O₄/C/au NPs. Nanoscale 6(14): 7954-7958
Kuroda, T.; Yasuda, S.; Kusakawa, S.; Hirata, N.; Kanda, Y.; Suzuki, K.; Takahashi, M.; Nishikawa, S.-I.; Kawamata, S.; Sato, Y. 2012: Highly sensitive in vitro methods for detection of residual undifferentiated cells in retinal pigment epithelial cells derived from human iPS cells. Plos one 7(5): E37342
McLatchie, A.P.; Burrell-Saward, H.; Myburgh, E.; Lewis, M.D.; Ward, T.H.; Mottram, J.C.; Croft, S.L.; Kelly, J.M.; Taylor, M.C. 2013: Highly sensitive in vivo imaging of Trypanosoma brucei expressing "red-shifted" luciferase. Plos Neglected Tropical Diseases 7(11): E2571
Harris, J.; Lu, P.; Larocque, H.; Xu, Y.; Chen, L.; Bao, X. 2013: Highly sensitive in-fiber interferometric refractometer with temperature and axial strain compensation. Optics Express 21(8): 9996-10009
Hu, Y.-W.; Yang, T.; Wang, X.-X.; Jiao, K. 2010: Highly sensitive indicator-free impedance sensing of DNA hybridization based on poly(m-aminobenzenesulfonic acid)/TiO2 nanosheet membranes with pulse potentiostatic method preparation. Chemistry 16(6): 1992-1999
Mohammad Haniff, M.Aniq.Shazni.; Lee, H.Wah.; Bien, D.Chia.Sheng.; Teh, A.Shih.; Azid, I.Abdul. 2014: Highly sensitive integrated pressure sensor with horizontally oriented carbon nanotube network. Nanoscale Research Letters 9(1): 49
Urano, Y. 2012: Highly sensitive intraoperative detection of tiny tumors with novel "activatable" fluorescence probes. Yakugaku Zasshi: Journal of the Pharmaceutical Society of Japan 132(4): 397-406
Chen, Z.; Zhang, Z.; Qu, C.; Pan, D.; Chen, L. 2012: Highly sensitive label-free colorimetric sensing of nitrite based on etching of gold nanorods. Analyst 137(22): 5197-5200
Yin, J.; He, X.; Jia, X.; Wang, K.; Xu, F. 2013: Highly sensitive label-free fluorescent detection of Hg2+ ions by DNA molecular machine-based Ag nanoclusters. Analyst 138(8): 2350-2356
Schrobenhauser, R.; Strzoda, R.; Fleischer, M.; Amann, M-Christian. 2012: Highly sensitive laser-based sensor for nanoparticles in air using a dual-ring-mirror setup. Optics Letters 37(14): 2847-2849
Oda, K.; Ido, A.; Tamai, T.; Matsushita, M.; Kumagai, K.; Mawatari, S.-i.; Saishoji, A.; Kure, T.; Ohno, K.; Toyokura, E.; Imanaka, D.; Moriuchi, A.; Uto, H.; Oketani, M.; Hashiguchi, T.; Tsubouchi, H. 2011: Highly sensitive lens culinaris agglutinin-reactive α-fetoprotein is useful for early detection of hepatocellular carcinoma in patients with chronic liver disease. Oncology Reports 26(5): 1227-1233
Dai, Y.; Sun, Q.; Tan, S.; Wo, J.; Zhang, J.; Liu, D. 2012: Highly sensitive liquid-level sensor based on dual-wavelength double-ring fiber laser assisted by beat frequency interrogation. Optics Express 20(25): 27367-27376
Ikeda, K.; Taguchi, R. 2010: Highly sensitive localization analysis of gangliosides and sulfatides including structural isomers in mouse cerebellum sections by combination of laser microdissection and hydrophilic interaction liquid chromatography/electrospray ionization mass spectrometry with theoretically expanded multiple reaction monitoring. Rapid Communications in Mass Spectrometry: Rcm 24(20): 2957-2965
Lee, J.-H.; Kim, B.-C.; Oh, B.-K.; Choi, J.-W. 2013: Highly sensitive localized surface plasmon resonance immunosensor for label-free detection of HIV-1. Nanomedicine: Nanotechnology Biology and Medicine 9(7): 1018-1026
Zhang, H.-X.; Chen, J.-B.; Guo, X.-F.; Wang, H.; Zhang, H.-S. 2014: Highly sensitive low-background fluorescent probes for imaging of nitric oxide in cells and tissues. Analytical Chemistry 86(6): 3115-3123
Mehta, S.K.; Salaria, K.; Umar, A. 2013: Highly sensitive luminescent sensor for cyanide ion detection in aqueous solution based on PEG-coated ZnS nanoparticles. Spectrochimica Acta. Part A Molecular and Biomolecular Spectroscopy 105: 516-521
Cheng, Y.; Yuan, R.; Chai, Y.; Niu, H.; Cao, Y.; Liu, H.; Bai, L.; Yuan, Y. 2012: Highly sensitive luminol electrochemiluminescence immunosensor based on ZnO nanoparticles and glucose oxidase decorated graphene for cancer biomarker detection. Analytica Chimica Acta 745: 137-142
Stefankiewicz, A.R.; Lehn, J.-M. 2009: Highly sensitive magnetic effects induced by hydrogen-bonding interactions in a high-spin metallosupramolecular Fe(4) (II) [2x2] grid-type complex. Chemistry 15(11): 2500-2503
Li, M.; Gu, H.; Zhang, C. 2012: Highly sensitive magnetite nano clusters for MR cell imaging. Nanoscale Research Letters 7(1): 204
Miura, D.; Fujimura, Y.; Tachibana, H.; Wariishi, H. 2010: Highly sensitive matrix-assisted laser desorption ionization-mass spectrometry for high-throughput metabolic profiling. Analytical Chemistry 82(2): 498-504
Wakuda, H.; Nejime, N.; Tada, Y.; Kagota, S.; Umegaki, K.; Yamada, S.; Shinozuka, K. 2010: Highly sensitive measurement of P-glycoprotein-mediated transport activity in Caco-2 cells. Biological and Pharmaceutical Bulletin 33(7): 1238-1241
Su, J.; Cao, L.; Li, L.; Wei, J.; Li, G.; Yuan, Y. 2013: Highly sensitive methane catalytic combustion micro-sensor based on mesoporous structure and nano-catalyst. Nanoscale 5(20): 9720-9725
Ruan, L.; Xu, Z.; Lan, T.; Wang, J.; Liu, H.; Li, C.; Dong, C.; Ren, J. 2012: Highly sensitive method for assay of drug-induced apoptosis using fluorescence correlation spectroscopy. Analytical Chemistry 84(17): 7350-7358
Kodamatani, H.; Yamazaki, S.; Saito, K.; Amponsaa-Karikari, A.; Kishikawa, N.; Kuroda, N.; Tomiyasu, T.; Komatsu, Y. 2009: Highly sensitive method for determination of N-nitrosamines using high-performance liquid chromatography with online UV irradiation and luminol chemiluminescence detection. Journal of Chromatography. a 1216(1): 92-98
Horta, S.; Barreto, M.C.; Pepe, A.; Campos, J.; Oliva, A. 2014: Highly sensitive method for diagnosis of subclinical B. ovis infection. Ticks and Tick-Borne Diseases 5(6): 902-906
Sharma, S.; Dubey, N.K.; Dasgupta, A.K.; Sahu, M.; Benjamin, B.; Mullangi, R.; Srinivas, N.R. 2012: Highly sensitive method for the determination of JI-101, a multi-kinase inhibitor in human plasma and urine by LC-MS/MS-ESI: method validation and application to a clinical pharmacokinetic study. Biomedical Chromatography: Bmc 26(2): 232-238
Gurav, S.D.; Gilibili, R.R.; Jeniffer, S.; Giri, S.; Srinivas, N.R.; Mullangi, R. 2011: Highly sensitive method for the determination of a novel triple kinase inhibitor with anti-cancer activity, JI-101, in rat plasma by liquid chromatography-electrospray ionization tandem mass spectrometry: application to a pharmacokinetic study. Biomedical Chromatography: Bmc 25(7): 794-800
Sharma, K.; Singh, R.; Giri, S.; Rajagopal, S.; Mullangi, R. 2012: Highly sensitive method for the determination of adenosine by LC-MS/MS-ESI: method validation and scope of application to a pharmacokinetic/pharmacodynamic study. Biomedical Chromatography: Bmc 26(1): 81-88
Vittal, S.; Ganneboina, R.; Layek, B.; Trivedi, R.K.; Hotha, K.K.; Bharathi, D.V.; Mullangi, R. 2009: Highly sensitive method for the determination of omeprazole in human plasma by liquid chromatography-electrospray ionization tandem mass spectrometry: application to a clinical pharmacokinetic study. Biomedical Chromatography: Bmc 23(4): 390-396
Bharathi, D.V.; Jagadeesh, B.; Kumar, S.S.; Lakshmi, R.N.; Hotha, K.K.; Naidu, A.; Mullangi, R. 2009: Highly sensitive method for the determination of ropinirole with a lower limit of quantitation of 3.45 pg/mL in human plasma by LC-ESI-MS/MS: application to a clinical pharmacokinetic study. Biomedical Chromatography: Bmc 23(5): 557-562
Tanabe, R.; Cha, B.-Y.; Yonezawa, T.; Woo, J.-T.; Nagai, K. 2010: Highly sensitive method of detecting verotoxins produced by enterohaemorrhagic Escherichia coli O-157 : H7 using a protein chip. Shokuhin Eiseigaku Zasshi. Journal of the Food Hygienic Society of Japan 51(1): 28-31
Pasternak, A.O.; Adema, K.W.; Bakker, M.; Jurriaans, S.; Berkhout, B.; Cornelissen, M.; Lukashov, V.V. 2008: Highly sensitive methods based on seminested real-time reverse transcription-PCR for quantitation of human immunodeficiency virus type 1 unspliced and multiply spliced RNA and proviral DNA. Journal of Clinical Microbiology 46(7): 2206-2211
Ji, L.; Cai, Z.; Qian, Y.; Wu, P.; Zhang, H.; Cai, C. 2014: Highly sensitive methyltransferase activity assay and inhibitor screening based on fluorescence quenching of graphene oxide integrated with the site-specific cleavage of restriction endonuclease. Chemical Communications 50(73): 10691-10694
Yang, T.; Vdovenko, M.; Jin, X.; Sakharov, I.Y.; Zhao, S. 2014: Highly sensitive microfluidic competitive enzyme immunoassay based on chemiluminescence resonance energy transfer for the detection of neuron-specific enolase. Electrophoresis 35(14): 2022-2028
Liu, F.; Li, Y.; Song, C.; Dong, B.; Liu, Z.; Zhang, K.; Li, H.; Sun, Y.; Wei, Y.; Yang, A.; Yang, K.; Jin, B. 2010: Highly sensitive microplate chemiluminescence enzyme immunoassay for the determination of staphylococcal enterotoxin B based on a pair of specific monoclonal antibodies and its application to various matrices. Analytical Chemistry 82(18): 7758-7765
Malima, A.; Siavoshi, S.; Musacchio, T.; Upponi, J.; Yilmaz, C.; Somu, S.; Hartner, W.; Torchilin, V.; Busnaina, A. 2012: Highly sensitive microscale in vivo sensor enabled by electrophoretic assembly of nanoparticles for multiple biomarker detection. Lab on a Chip 12(22): 4748-4754
Aubard, J.; Nozeran, J.M.; Levoir, P.; Meyer, J.J.; Dubois, J.E. 1979: Highly sensitive microwave temperature-jump apparatus. Review of Scientific Instruments 50(1): 52
Wong, W.Chang.; Chan, C.Chiu.; Chen, L.Han.; Tou, Z.Qiang.; Leong, K.Chew. 2011: Highly sensitive miniature photonic crystal fiber refractive index sensor based on mode field excitation. Optics Letters 36(9): 1731-1733
Klein, A.E.; Schmidt, C.; Liebsch, M.; Janunts, N.; Dobynde, M.; Tünnermann, A.; Pertsch, T. 2014: Highly sensitive mode mapping of whispering-gallery modes by scanning thermocouple-probe microscopy. Optics Letters 39(5): 1157-1160
Ito, R.; Katano, I.; Kawai, K.; Hirata, H.; Ogura, T.; Kamisako, T.; Eto, T.; Ito, M. 2009: Highly sensitive model for xenogenic GVHD using severe immunodeficient NOG mice. Transplantation 87(11): 1654-1658
Li, J.; Li, Y.; Zhang, Y.; Wei, G. 2012: Highly sensitive molecularly imprinted electrochemical sensor based on the double amplification by an inorganic Prussian blue catalytic polymer and the enzymatic effect of glucose oxidase. Analytical Chemistry 84(4): 1888-1893
Pesin, J.; Faingersh, A.; Waisman, D.; Landesberg, A. 2014: Highly sensitive monitoring of chest wall dynamics and acoustics provides diverse valuable information for evaluating ventilation and diagnosing pneumothorax. Journal of Applied Physiology 116(12): 1632-1640
Gao, H.; Han, J.; Yang, S.; Wang, Z.; Wang, L.; Fu, Z. 2014: Highly sensitive multianalyte immunochromatographic test strip for rapid chemiluminescent detection of ractopamine and salbutamol. Analytica Chimica Acta 839: 91-96
Hamm, P.; Wiemann, S.; Zurek, M.; Zinth, W. 1994: Highly sensitive multichannel spectrometer for subpicosecond spectroscopy in the midinfrared. Optics Letters 19(20): 1642-1644
Dong, H.; Zhang, J.; Ju, H.; Lu, H.; Wang, S.; Jin, S.; Hao, K.; Du, H.; Zhang, X. 2012: Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction. Analytical Chemistry 84(10): 4587-4593
Chen, J.; Huang, Y.; Shi, M.; Zhao, S.; Zhao, Y. 2013: Highly sensitive multiplexed DNA detection using multi-walled carbon nanotube-based multicolor nanobeacon. Talanta 109: 160-166
Wu, C.-S.; Khaing Oo, M.K.; Fan, X. 2010: Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes. Acs Nano 4(10): 5897-5904
Wang, J.; Smith, R.J.; Light, R.A.; Richens, J.L.; Zhang, J.; O'Shea, P.; See, C.; Somekh, M.G. 2014: Highly sensitive multipoint real-time kinetic detection of Surface Plasmon bioanalytes with custom CMOS cameras. Biosensors and Bioelectronics 58: 157-164
Wu, D.; Huang, W.; Lin, Z.; Duan, C.; He, C.; Wu, S.; Wang, D. 2008: Highly sensitive multiresponsive chemosensor for selective detection of Hg2+ in natural water and different monitoring environments. Inorganic Chemistry 47(16): 7190-7201
Vitoux, D.; Mourah, S.; Kerob, D.; Verola, O.; Basset-Seguin, N.; Baccard, M.; Schartz, N.; Ollivaud, L.; Archimbaud, A.; Servant, J.-M.; Revol, M.; Toubert, M.-E.; Podgorniak, M.-P.; Plassa, F.ço.; Porcher, R.; Lebbé, C.él. 2009: Highly sensitive multivariable assay detection of melanocytic differentiation antigens and angiogenesis biomarkers in sentinel lymph nodes with melanoma micrometastases. Archives of Dermatology 145(10): 1105-1113
Huang, H.; Qi, Z.; Deng, L.; Zhou, G.; Kajiyama, T.; Kambara, H. 2009: Highly sensitive mutation detection based on digital amplification coupled with hydrogel bead-array. Chemical Communications 27: 4094-4096
Ruan, Y.-B.; Li, C.; Tang, J.; Xie, J. 2010: Highly sensitive naked-eye and fluorescence "turn-on" detection of Cu(2+) using Fenton reaction assisted signal amplification. Chemical Communications 46(48): 9220-9222
Yeom, S.-H.; Kim, O.-G.; Kang, B.-H.; Kim, K.-J.; Yuan, H.; Kwon, D.-H.; Kim, H.-R.; Kang, S.-W. 2011: Highly sensitive nano-porous lattice biosensor based on localized surface plasmon resonance and interference. Optics Express 19(23): 22882-22891
Wu, S.; Liu, H.; Liang, X.M.; Wu, X.; Wang, B.; Zhang, Q. 2014: Highly sensitive nanomechanical immunosensor using half antibody fragments. Analytical Chemistry 86(9): 4271-4277
Zhang, H.; Fan, J.; Wang, K.; Li, J.; Wang, C.; Nie, Y.; Jiang, T.; Mu, H.; Peng, X.; Jiang, K. 2014: Highly sensitive naphthalene-based two-photon fluorescent probe for in situ real-time bioimaging of ultratrace cyclooxygenase-2 in living biosystems. Analytical Chemistry 86(18): 9131-9138
Dubey, M.; Bernasek, S.L.; Schwartz, J. 2007: Highly sensitive nitric oxide detection using X-ray photoelectron spectroscopy. Journal of the American Chemical Society 129(22): 6980-6981
Pangasa, A.; Jex, A.R.; Nolan, M.J.; Campbell, B.E.; Haydon, S.R.; Stevens, M.A.; Gasser, R.B. 2010: Highly sensitive non-isotopic restriction endonuclease fingerprinting of nucleotide variability in the gp60 gene within Cryptosporidium species, genotypes and subgenotypes infective to humans, and its implications. Electrophoresis 31(10): 1637-1647
Cai, S.; Xin, L.; Lau, C.; Lu, J. 2010: Highly sensitive non-stripping gold nanoparticles-based chemiluminescent detection of DNA hybridization coupled to magnetic beads. Analyst 135(3): 615-620
Gao, W.; Tjiu, W.W.; Wei, J.; Liu, T. 2014: Highly sensitive nonenzymatic glucose and H2O2 sensor based on Ni(OH)2/electroreduced graphene oxide--multiwalled carbon nanotube film modified glass carbon electrode. Talanta 120: 484-490
Cao, F.; Guo, S.; Ma, H.; Yang, G.; Yang, S.; Gong, J. 2011: Highly sensitive nonenzymatic glucose sensor based on electrospun copper oxide-doped nickel oxide composite microfibers. Talanta 86: 214-220
Hidestrand, M.; Tomita-Mitchell, A.; Hidestrand, P.M.; Oliphant, A.; Goetsch, M.; Stamm, K.; Liang, H.-L.; Castleberry, C.; Benson, D.W.; Stendahl, G.; Simpson, P.M.; Berger, S.; Tweddell, J.S.; Zangwill, S.; Mitchell, M.E. 2014: Highly sensitive noninvasive cardiac transplant rejection monitoring using targeted quantification of donor-specific cell-free deoxyribonucleic acid. Journal of the American College of Cardiology 63(12): 1224-1226
Sato, S.; Takenaka, S. 2014: Highly sensitive nuclease assays based on chemically modified DNA or RNA. Sensors 14(7): 12437-12450
Hayat, A.; Sassolas, A.; Marty, J.-L.; Radi, A.-E. 2013: Highly sensitive ochratoxin a impedimetric aptasensor based on the immobilization of azido-aptamer onto electrografted binary film via click chemistry. Talanta 103: 14-19
Kawai, T.; Watanabe, M.; Sueyoshi, K.; Kitagawa, F.; Otsuka, K. 2012: Highly sensitive oligosaccharide analysis in capillary electrophoresis using large-volume sample stacking with an electroosmotic flow pump. Journal of Chromatography. a 1232: 52-58
Padmanabhan, S.; Shinoj, V.K.; Murukeshan, V.M.; Padmanabhan, P. 2010: Highly sensitive optical detection of specific protein in breast cancer cells using microstructured fiber in extremely low sample volume. Journal of Biomedical Optics 15(1): 017005
Dacres, H.; Narayanaswamy, R. 2006: Highly sensitive optical humidity probe. Talanta 69(3): 631-636
Gass, P.A.; Schalk, S.; Sambles, J.R. 1994: Highly sensitive optical measurement techniques based on acousto-optic devices. Applied Optics 33(31): 7501-7510
Xing, L.; Xu, Y.; Wang, R.; Xu, W.; Zhang, Z. 2014: Highly sensitive optical thermometry based on upconversion emissions in Tm3+/Yb3+ codoped LiNbO3 single crystal. Optics Letters 39(3): 454-457
Hanada, Y.; Sugioka, K.; Midorikawa, K. 2012: Highly sensitive optofluidic chips for biochemical liquid assay fabricated by 3D femtosecond laser micromachining followed by polymer coating. Lab on a Chip 12(19): 3688-3693
Wang, Y.; Li, B.; Liu, Y.; Zhang, L.; Zuo, Q.; Shi, L.; Su, Z. 2009: Highly sensitive oxygen sensors based on Cu(I) complex-polystyrene composite nanofibrous membranes prepared by electrospinning. Chemical Communications 39: 5868-5870
Lopeandia, A.F.; André, E.; Garden, J.-L.; Givord, D.; Bourgeois, O. 2010: Highly sensitive parylene membrane-based ac-calorimeter for small mass magnetic samples. Review of Scientific Instruments 81(5): 053901
Wissenwasser, J.; Vellekoop, M.; Heer, R. 2010: Highly sensitive passive radio frequency identification based sensor systems. Review of Scientific Instruments 81(2): 025106
Loroch, S.; Zahedi, R.é P.; Sickmann, A. 2015: Highly sensitive phosphoproteomics by tailoring solid-phase extraction to electrostatic repulsion-hydrophilic interaction chromatography. Analytical Chemistry 87(3): 1596-1604
Furumi, S.; Ichimura, K. 2011: Highly sensitive photoalignment of calamitic and discotic liquid crystals assisted by axis-selective triplet energy transfer. Physical Chemistry Chemical Physics: Pccp 13(11): 4919-4927
Shen, Q.; Han, L.; Fan, G.; Abdel-Halim, E.S.; Jiang, L.; Zhu, J.-J. 2015: Highly sensitive photoelectrochemical assay for DNA methyltransferase activity and inhibitor screening by exciton energy transfer coupled with enzyme cleavage biosensing strategy. Biosensors and Bioelectronics 64: 449-455
Zhao, W.-W.; Ma, Z.-Y.; Yu, P.-P.; Dong, X.-Y.; Xu, J.-J.; Chen, H.-Y. 2012: Highly sensitive photoelectrochemical immunoassay with enhanced amplification using horseradish peroxidase induced biocatalytic precipitation on a CdS quantum dots multilayer electrode. Analytical Chemistry 84(2): 917-923
Kim, Y.S.; Bae, S.Y.; Kim, K.H.; Lee, T.W.; Hur, J.A.; Hoang, M.H.; Cho, M.J.; Kim, S.-J.; Kim, Y.; Kim, M.; Lee, K.; Lee, S.J.; Choi, D.H. 2011: Highly sensitive phototransistor with crystalline microribbons from new π-extended pyrene derivative via solution-phase self-assembly. Chemical Communications 47(31): 8907-8909
Delarue, S.év.; Didier, E.; Damond, F.; Ponscarme, D.; Brengle-Pesce, K.; Resche-Rigon, M.; Vray, M.; Gueudin, M.; Simon, F.ço. 2013: Highly sensitive plasma RNA quantification by real-time PCR in HIV-2 group a and group B infection. Journal of Clinical Virology: the Official Publication of the Pan American Society for Clinical Virology 58(2): 461-467
Jakab, A.; Rosman, C.; Khalavka, Y.; Becker, J.; Trügler, A.; Hohenester, U.; Sönnichsen, C. 2011: Highly sensitive plasmonic silver nanorods. Acs Nano 5(9): 6880-6885
He, Q.C.; Duthie, J.G.; Gregory, D.A. 1989: Highly sensitive polarization-controlled optical switching with a photorefractive double phase conjugator. Optics Letters 14(11): 575-577
Liu, Y.; Wang, W.; Hu, W.; Lu, Z.; Zhou, X.; Li, C.M. 2011: Highly sensitive poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] brush-based flow-through microarray immunoassay device. Biomedical Microdevices 13(4): 769-777
Tak, Y.K.; Kim, W.Y.; Kim, M.J.; Han, E.; Han, M.S.; Kim, J.J.; Kim, W.; Lee, J.E.; Song, J.M. 2012: Highly sensitive polymerase chain reaction-free quantum dot-based quantification of forensic genomic DNA. Analytica Chimica Acta 721: 85-91
Barik, M.A.; Sarma, M.K.; Sarkar, C.R.; Dutta, J.C. 2014: Highly sensitive potassium-doped polypyrrole/carbon nanotube-based enzyme field effect transistor (ENFET) for cholesterol detection. Applied Biochemistry and Biotechnology 174(3): 1104-1114
Kang, Y.; Gwon, K.; Shin, J.H.; Nam, H.; Meyerhoff, M.E.; Cha, G.S. 2011: Highly sensitive potentiometric strip test for detecting high charge density impurities in heparin. Analytical Chemistry 83(10): 3957-3962
Chen, M.-L.; Huang, Y.-Q.; Liu, J.-Q.; Yuan, B.-F.; Feng, Y.-Q. 2011: Highly sensitive profiling assay of acidic plant hormones using a novel mass probe by capillary electrophoresis-time of flight-mass spectrometry. Journal of Chromatography. B Analytical Technologies in the Biomedical and Life Sciences 879(13-14): 938-944
Han, X.X.; Xie, Y.; Zhao, B.; Ozaki, Y. 2010: Highly sensitive protein concentration assay over a wide range via surface-enhanced Raman scattering of Coomassie brilliant blue. Analytical Chemistry 82(11): 4325-4328
Li, H.; Xie, H.; Huang, Y.; Bo, B.; Zhu, X.; Shu, Y.; Li, G. 2013: Highly sensitive protein detection based on a novel probe with catalytic activity combined with a signal amplification strategy: assay of MDM2 for cancer staging. Chemical Communications 49(84): 9848-9850
Xue, L.; Zhou, X.; Xing, D. 2010: Highly sensitive protein detection based on aptamer probe and isothermal nicking enzyme assisted fluorescence signal amplification. Chemical Communications 46(39): 7373-7375
Zuchner, T.; Schumer, F.; Berger-Hoffmann, R.; Müller, K.; Lukas, M.; Zeckert, K.; Marx, J.ör.; Hennig, H.; Hoffmann, R. 2009: Highly sensitive protein detection based on lanthanide chelates with antenna ligands providing a linear range of five orders of magnitude. Analytical Chemistry 81(22): 9449-9453
Ivanov, Y.D.; Pleshakova, T.; Malsagova, K.; Kozlov, A.; Kaysheva, A.; Kopylov, A.; Izotov, A.; Andreeva, E.; Kanashenko, S.; Usanov, S.; Archakov, A. 2014: Highly sensitive protein detection by combination of atomic force microscopy fishing with charge generation and mass spectrometry analysis. Febs Journal 281(20): 4705-4717
Liu, M.; Jia, C.; Huang, Y.; Lou, X.; Yao, S.; Jin, Q.; Zhao, J.; Xiang, J. 2010: Highly sensitive protein detection using enzyme-labeled gold nanoparticle probes. Analyst 135(2): 327-331
Zhao, Z.; Zhou, X.; Xing, D. 2012: Highly sensitive protein kinase activity assay based on electrochemiluminescence nanoprobes. Biosensors and Bioelectronics 31(1): 299-304
Li, Y.; Li, Y.; Hong, M.; Bin, Q.; Lin, Z.; Lin, Z.; Cai, Z.; Chen, G. 2013: Highly sensitive protein molecularly imprinted electro-chemical sensor based on gold microdendrites electrode and prussian blue mediated amplification. Biosensors and Bioelectronics 42: 612-617
Di Palma, S.; Stange, D.; van de Wetering, M.; Clevers, H.; Heck, A.J.R.; Mohammed, S. 2011: Highly sensitive proteome analysis of FACS-sorted adult colon stem cells. Journal of Proteome Research 10(8): 3814-3819
Stang, K.; Fennrich, S.; Krajewski, S.; Stoppelkamp, S.; Burgener, I.A.; Wendel, H.-P.; Post, M. 2014: Highly sensitive pyrogen detection on medical devices by the monocyte activation test. Journal of Materials Science. Materials in Medicine 25(4): 1065-1075
Wu, H.; Wu, W.; Chen, Z.; Wang, W.; Zhou, G.; Kajiyama, T.; Kambara, H. 2011: Highly sensitive pyrosequencing based on the capture of free adenosine 5' phosphosulfate with adenosine triphosphate sulfurylase. Analytical Chemistry 83(9): 3600-3605
Shirai, M.; Goto, M.; Suzuki, S.; Kono, K.; Kajiyama, T.; Kambara, H. 2011: Highly sensitive pyrosequencing system with polymer-supported enzymes for high-throughput DNA analysis. Analytical Chemistry 83(19): 7560-7565
Honda, A.; Yamashita, K.; Hara, T.; Ikegami, T.; Miyazaki, T.; Shirai, M.; Xu, G.; Numazawa, M.; Matsuzaki, Y. 2009: Highly sensitive quantification of key regulatory oxysterols in biological samples by LC-ESI-MS/MS. Journal of Lipid Research 50(2): 350-357
Honda, A.; Yamashita, K.; Ikegami, T.; Hara, T.; Miyazaki, T.; Hirayama, T.; Numazawa, M.; Matsuzaki, Y. 2009: Highly sensitive quantification of serum malonate, a possible marker for de novo lipogenesis, by LC-ESI-MS/MS. Journal of Lipid Research 50(10): 2124-2130
Shuey, M.M.; Drees, K.P.; Lindner, D.L.; Keim, P.; Foster, J.T. 2014: Highly sensitive quantitative PCR for the detection and differentiation of Pseudogymnoascus destructans and other Pseudogymnoascus species. Applied and Environmental Microbiology 80(5): 1726-1731
Mir, M.; Bergamaschi, A.; Katzenellenbogen, B.S.; Popescu, G. 2014: Highly sensitive quantitative imaging for monitoring single cancer cell growth kinetics and drug response. Plos one 9(2): E89000
Schussek, S.; Groves, P.L.; Apte, S.H.; Doolan, D.L. 2013: Highly sensitive quantitative real-time PCR for the detection of Plasmodium liver-stage parasite burden following low-dose sporozoite challenge. Plos one 8(10): E77811
Poras, H.é; Duquesnoy, S.; Dange, E.; Pinon, A.; Vialette, M.èl.; Fournié-Zaluski, M.-C.; Ouimet, T. 2012: Highly sensitive quenched fluorescent substrate of Legionella major secretory protein (msp) based on its structural analysis. Journal of Biological Chemistry 287(24): 20221-20230
Mao, Z.; Hu, L.; Dong, X.; Zhong, C.; Liu, B.-F.; Liu, Z. 2014: Highly sensitive quinoline-based two-photon fluorescent probe for monitoring intracellular free zinc ions. Analytical Chemistry 86(13): 6548-6554
Wang, C.; Wu, J.; Zong, C.; Ju, H.; Yan, F. 2011: Highly sensitive rapid chemiluminescent immunoassay using the DNAzyme label for signal amplification. Analyst 136(20): 4295-4300
Hsieh, Y.-H.; Liu, S.-J.; Chen, H.-W.; Lin, Y.-K.; Liang, K.S.; Lai, L.-J. 2010: Highly sensitive rare cell detection based on quantum dot probe fluorescence analysis. Analytical and Bioanalytical Chemistry 396(3): 1135-1141
Patil, S.; Fegade, U.; Sahoo, S.K.; Singh, A.; Marek, J.; Singh, N.; Bendre, R.; Kuwar, A. 2014: Highly sensitive ratiometric chemosensor for selective 'naked-eye' nanomolar detection of Co(2+) in semi-aqueous media. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry 15(11): 2230-2235
Jang, S.; Thirupathi, P.; Neupane, L.Nath.; Seong, J.; Lee, H.; Lee, W.In.; Lee, K-Hyeung. 2012: Highly sensitive ratiometric fluorescent chemosensor for silver ion and silver nanoparticles in aqueous solution. Organic Letters 14(18): 4746-4749
Sun, J.; Yang, F.; Zhao, D.; Yang, X. 2014: Highly sensitive real-time assay of inorganic pyrophosphatase activity based on the fluorescent gold nanoclusters. Analytical Chemistry 86(15): 7883-7889
Tran, V.; Moser, L.A.; Poole, D.S.; Mehle, A. 2013: Highly sensitive real-time in vivo imaging of an influenza reporter virus reveals dynamics of replication and spread. Journal of Virology 87(24): 13321-13329
Xu, H.; Xu, P.; Gao, S.; Zhang, S.; Zhao, X.; Fan, C.; Zuo, X. 2013: Highly sensitive recognition of Pb(2+) using Pb(2+) triggered exonuclease aided DNA recycling. Biosensors and Bioelectronics 47: 520-523
Ayyar, B.V.; Hearty, S.; O'Kennedy, R. 2010: Highly sensitive recombinant antibodies capable of reliably differentiating heart-type fatty acid binding protein from noncardiac isoforms. Analytical Biochemistry 407(2): 165-171
Kim, K.S.; Um, Y.M.; Jang, J.-R.; Choe, W.-S.; Yoo, P.J. 2013: Highly sensitive reduced graphene oxide impedance sensor harnessing π-stacking interaction mediated direct deposition of protein probes. Acs Applied Materials and Interfaces 5(9): 3591-3598
Ji, W.B.; Tjin, S.C.; Lin, B.; Ng, C.L. 2013: Highly sensitive refractive index sensor based on adiabatically tapered microfiber long period gratings. Sensors 13(10): 14055-14063
Fan, Y.-e.; Zhu, T.; Shi, L.; Rao, Y.-J. 2011: Highly sensitive refractive index sensor based on two cascaded special long-period fiber gratings with rotary refractive index modulation. Applied Optics 50(23): 4604-4610
Rindorf, L.; Bang, O. 2008: Highly sensitive refractometer with a photonic-crystal-fiber long-period grating. Optics Letters 33(6): 563-565
Saito, K.; Matsunaga, H.; Ohmura, A.; Takekuma, M.; Matsuki, Y.; Nakazawa, H. 2009: Highly sensitive reporter gene assay for dioxins in human plasma by using cycloheximide as an enhancer substance. Analytical Sciences: the International Journal of the Japan Society for Analytical Chemistry 25(8): 1029-1032
Tang, Y.; Zhang, Y.; Su, Y.; Lv, Y. 2013: Highly sensitive resonance light scattering bioassay for heparin based on polyethyleneimine-capped Ag nanoclusters. Talanta 115: 830-836
Zhang, Y.; Cui, S.; Chang, J.; Ocola, L.E.; Chen, J. 2013: Highly sensitive room temperature carbon monoxide detection using SnO2 nanoparticle-decorated semiconducting single-walled carbon nanotubes. Nanotechnology 24(2): 025503
Tang, Y.-L.; Li, Z.-J.; Ma, J.-Y.; Su, H.-Q.; Guo, Y.-J.; Wang, L.; Du, B.; Chen, J.-J.; Zhou, W.; Yu, Q.-K.; Zu, X.-T. 2014: Highly sensitive room-temperature surface acoustic wave (SAW) ammonia sensors based on Co₃O₄/SiO₂ composite films. Journal of Hazardous Materials 280: 127-133
Barbeau, D.; Maître, A.; Marques, M. 2011: Highly sensitive routine method for urinary 3-hydroxybenzo[a]pyrene quantitation using liquid chromatography-fluorescence detection and automated off-line solid phase extraction. Analyst 136(6): 1183-1191
Mondal, M.; Prakash, B.S. 2007: Highly sensitive second-antibody enzyme immunoassay for determination of estradiol-17beta concentration in blood plasma of the mithun (Bos frontalis). Zoological Science 24(4): 408-413
Otsuka, K.; Kawai, R.; Asakawa, Y.; Fukazawa, T. 1999: Highly sensitive self-mixing measurement of Brillouin scattering with a laser-diode-pumped microchip LiNdP(4)O(12) laser. Optics Letters 24(24): 1862-1864
Aksuner, N.; Henden, E.; Yenigul, B.; Yilmaz, I.; Cukurovali, A. 2011: Highly sensitive sensing of zinc(II) by development and characterization of a PVC-based fluorescent chemical sensor. Spectrochimica Acta. Part a Molecular and Biomolecular Spectroscopy 78(3): 1133-1138
Tang, L.; Zeng, G.; Shen, G.; Zhang, Y.; Li, Y.; Fan, C.; Liu, C.; Niu, C. 2009: Highly sensitive sensor for detection of NADH based on catalytic growth of Au nanoparticles on glassy carbon electrode. Analytical and Bioanalytical Chemistry 393(6-7): 1677-1684
Vishnikin, A.B.; Al-Shwaiyat, M.K.E.A.; Petrushina, G.A.; Tsiganok, L.P.; Andruch, V.; Bazel, Y.R.; Sklenářová, H.; Solich, P. 2012: Highly sensitive sequential injection determination of p-aminophenol in paracetamol formulations with 18-molybdodiphosphate heteropoly anion based on elimination of Schlieren effect. Talanta 96: 230-235
Campo, J.; Desmet, F.; Wenseleers, W.; Goovaerts, E. 2009: Highly sensitive setup for tunable wavelength hyper-Rayleigh scattering with parallel detection and calibration data for various solvents. Optics Express 17(6): 4587-4604
Urbańczyk, W. 1988: Highly sensitive shearing interferometer. Applied Optics 27(5): 973-982
Haiberger, L.; Weingran, M.; Schiller, S. 2007: Highly sensitive silicon crystal torque sensor operating at the thermal noise limit. Review of Scientific Instruments 78(2): 025101
Henriksen, T.R.; Olsen, J.L.; Vesborg, P.; Chorkendorff, I.; Hansen, O. 2009: Highly sensitive silicon microreactor for catalyst testing. Review of Scientific Instruments 80(12): 124101
Yi, H.; Citrin, D.S.; Zhou, Z. 2010: Highly sensitive silicon microring sensor with sharp asymmetrical resonance. Optics Express 18(3): 2967-2972
Yang, C.; Liu, L.; Zeng, T.; Yang, D.; Yao, Z.; Zhao, Y.; Wu, H.-C. 2013: Highly sensitive simultaneous detection of lead(II) and barium(II) with G-quadruplex DNA in α-hemolysin nanopore. Analytical Chemistry 85(15): 7302-7307
Rakovich, T.Y.; Mahfoud, O.K.; Mohamed, B.M.; Prina-Mello, A.; Crosbie-Staunton, K.; Van Den Broeck, T.; De Kimpe, L.; Sukhanova, A.; Baty, D.; Rakovich, A.; Maier, S.A.; Alves, F.; Nauwelaers, F.; Nabiev, I.; Chames, P.; Volkov, Y. 2014: Highly sensitive single domain antibody-quantum dot conjugates for detection of HER2 biomarker in lung and breast cancer cells. Acs Nano 8(6): 5682-5695
Lee, I.; Luo, X.; Cui, X.T.; Yun, M. 2011: Highly sensitive single polyaniline nanowire biosensor for the detection of immunoglobulin G and myoglobin. Biosensors and Bioelectronics 26(7): 3297-3302
Flynn, B.P.; Tilburey, G.E.; Ruberti, J.W. 2013: Highly sensitive single-fibril erosion assay demonstrates mechanochemical switch in native collagen fibrils. Biomechanics and Modeling in Mechanobiology 12(2): 291-300
Pasternack, R.M.; Qian, Z.; Zheng, J.-Y.; Metaxas, D.N.; Boustany, N.N. 2009: Highly sensitive size discrimination of sub-micron objects using optical Fourier processing based on two-dimensional Gabor filters. Optics Express 17(14): 12001-12012
Isobe, K.; Ozeki, Y.; Kawasumi, T.; Kataoka, S.; Kajiyama, S.'i.; Fukui, K.; Itoh, K. 2006: Highly sensitive spectral interferometric four-wave mixing microscopy near the shot noise limit and its combination with two-photon excited fluorescence microscopy. Optics Express 14(23): 11204-11214
Ulu, S.T. 2009: Highly sensitive spectrofluorimetric determination of lomefloxacin in spiked human plasma, urine and pharmaceutical preparations. European Journal of Medicinal Chemistry 44(9): 3402-3405
Yu, F.; Liu, W.; Chen, F.; Cai, P. 2008: Highly sensitive spectrofluorimetric determination of trace amounts of prulifloxacin using the aluminium(III)-prulifloxacin system. Luminescence: the Journal of Biological and Chemical Luminescence 23(6): 429-433
Uddin, S.; Rauf, A.; Kazi, T.G.; Afridi, H.I.; Lutfullah, G. 2011: Highly sensitive spectrometric method for determination of hydroquinone in skin lightening creams: application in cosmetics. International Journal of Cosmetic Science 33(2): 132-137
Araci, I.E.; Mendes, S.B.; Yurt, N.; Honkanen, S.; Peyghambarian, N. 2007: Highly sensitive spectroscopic detection of heme-protein submonolayer films by channel integrated optical waveguide. Optics Express 15(9): 5595-5603
Huang, D.; Niu, C.; Ruan, M.; Wang, X.; Zeng, G.; Deng, C. 2013: Highly sensitive strategy for Hg2+ detection in environmental water samples using long lifetime fluorescence quantum dots and gold nanoparticles. Environmental Science and Technology 47(9): 4392-4398
Lee, C.H.; Hankus, M.E.; Tian, L.; Pellegrino, P.M.; Singamaneni, S. 2011: Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures. Analytical Chemistry 83(23): 8953-8958
Miyamaru, F.; Takeda, M.W.; Suzuki, T.; Otani, C. 2007: Highly sensitive surface plasmon terahertz imaging with planar plasmonic crystals. Optics Express 15(22): 14804-14809
Wang, X.; Chen, L.; Fu, X.; Chen, L.; Ding, Y. 2013: Highly sensitive surface-enhanced Raman scattering sensing of heparin based on antiaggregation of functionalized silver nanoparticles. Acs Applied Materials and Interfaces 5(21): 11059-11065
Sun, Y.; Liu, K.; Miao, J.; Wang, Z.; Tian, B.; Zhang, L.; Li, Q.; Fan, S.; Jiang, K. 2010: Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes. Nano Letters 10(5): 1747-1753
Yan, J.; Han, X.; He, J.; Kang, L.; Zhang, B.; Du, Y.; Zhao, H.; Dong, C.; Wang, H.-L.; Xu, P. 2012: Highly sensitive surface-enhanced Raman spectroscopy (SERS) platforms based on silver nanostructures fabricated on polyaniline membrane surfaces. Acs Applied Materials and Interfaces 4(5): 2752-2756
Wang, Y.-Q.; Liu, Y.; He, X.-W.; Li, W.-Y.; Zhang, Y.-K. 2012: Highly sensitive synchronous fluorescence determination of mercury (II) based on the denatured ovalbumin coated CdTe QDs. Talanta 99: 69-74
Singh, S.B.; Phillips, J.W.; Wang, J. 2007: Highly sensitive target-based whole-cell antibacterial discovery strategy by antisense RNA silencing. Current Opinion in Drug Discovery and Development 10(2): 160-166
Miura, F.; Ito, T. 2015: Highly sensitive targeted methylome sequencing by post-bisulfite adaptor tagging. Dna Research: An International Journal for Rapid Publication of Reports on Genes and Genomes 22(1): 13-18
Sikora, A.; Ftouni, H.; Richard, J.; Hébert, C.; Eon, D.; Omnès, F.; Bourgeois, O. 2012: Highly sensitive thermal conductivity measurements of suspended membranes (SiN and diamond) using a 3ω-Völklein method. Review of Scientific Instruments 83(5): 054902
Wang, C.; Hossain, M.; Ma, L.; Ma, Z.; Hickman, J.J.; Su, M. 2010: Highly sensitive thermal detection of thrombin using aptamer-functionalized phase change nanoparticles. Biosensors and Bioelectronics 26(2): 437-443
Zhang, X.; Zhu, S.; Deng, C.; Zhang, X. 2012: Highly sensitive thrombin detection by matrix assisted laser desorption ionization-time of flight mass spectrometry with aptamer functionalized core-shell Fe₃O₄@C@Au magnetic microspheres. Talanta 88: 295-302
Giovanella, L. 2008: Highly sensitive thyroglobulin measurements in differentiated thyroid carcinoma management. Clinical Chemistry and Laboratory Medicine 46(8): 1067-1073
Firooz, A.A.; Mahjoub, A.R.; Khodadadi, A.A.; Shahrjerdi, A. 2010: Highly sensitive tin oxide hollow microspheres and nanosheets to ethanol gas prepared by hydrothermal method. Journal of Nanoscience and Nanotechnology 10(9): 6049-6055
Gao, R.; Choi, N.; Chang, S.-I.; Kang, S.H.; Song, J.M.; Cho, S.I.; Lim, D.W.; Choo, J. 2010: Highly sensitive trace analysis of paraquat using a surface-enhanced Raman scattering microdroplet sensor. Analytica Chimica Acta 681(1-2): 87-91
Rizzo-Sierra, C.V.; Duran, M.C.; Leon-Sarmiento, F.E. 2011: Highly sensitive trait and ectomorphism: another link on creativity and psychopathology. Canadian Journal of Psychiatry. Revue Canadienne de Psychiatrie 56(11): 702; Author Reply 702-3
Zheng, L.; Zhang, L.; Tong, P.; Zheng, X.; Chi, Y.; Chen, G. 2010: Highly sensitive transient isotachophoresis sample stacking coupling with capillary electrophoresis-amperometric detection for analysis of doping substances. Talanta 81(4-5): 1288-1294
Fu, Z.; Li, Z.; Xie, H.; Li, T.; Li, C. 2010: Highly sensitive trivalent copper chelate-H2O2 system for CE-chemiluminescent detection of luminol-type compounds. Electrophoresis 31(19): 3342-3345
Li, T.; Wang, Z.; Xie, H.; Fu, Z. 2012: Highly sensitive trivalent copper chelate-luminol chemiluminescence system for capillary electrophoresis detection of epinephrine in the urine of smoker. Journal of Chromatography. B Analytical Technologies in the Biomedical and Life Sciences 911: 1-5
Lankeit, M.; Friesen, D.; Aschoff, J.; Dellas, C.; Hasenfuss, G.; Katus, H.; Konstantinides, S.; Giannitsis, E. 2010: Highly sensitive troponin T assay in normotensive patients with acute pulmonary embolism. European Heart Journal 31(15): 1836-1844
Jensen, J.K.; Ueland, T.; Aukrust, P.; Antonsen, L.; Kristensen, S.R.; Januzzi, J.L.; Ravkilde, J. 2012: Highly sensitive troponin T in patients with acute ischemic stroke. European Neurology 68(5): 287-293
Ceriani, E.; Rusconi, A.M. 2012: Highly sensitive troponin and diagnostic accuracy in acute myocardial infarction. Internal and Emergency Medicine 7(5): 471-473
Wazni, O.; Baranowski, B. 2013: Highly sensitive troponin assay and sudden cardiac death in the community: unlocking the pathophysiology of sudden cardiac death one biomarker at a time. Journal of the American College of Cardiology 62(22): 2121-2123
Scott, I.A.; Cullen, L.; Tate, J.R.; Parsonage, W. 2012: Highly sensitive troponin assays--a two-edged sword?. Medical Journal of Australia 197(6): 320-323
Lippi, G.; Montagnana, M.; Aloe, R.; Cervellin, G. 2012: Highly sensitive troponin immunoassays: navigating between the scylla and charybdis. Advances in Clinical Chemistry 58: 1-29
Giannitsis, E.; Katus, H.A. 2014: Highly sensitive troponins knocking at the door of primary prevention. European Heart Journal 35(5): 268-270
Hollander, J.E. 2009: Highly sensitive troponins the answer or just more questions?. Journal of the American College of Cardiology 54(13): 1173-1175
Kim, J.-M.; Lohani, C.R.; Neupane, L.N.; Choi, Y.; Lee, K.-H. 2012: Highly sensitive turn-on detection of Ag+ in aqueous solution and live cells with a symmetric fluorescent peptide. Chemical Communications 48(24): 3012-3014
Jiang, C.; Zhao, T.; Li, S.; Gao, N.; Xu, Q-Hua. 2013: Highly sensitive two-photon sensing of thrombin in serum using aptamers and silver nanoparticles. Acs Applied Materials and Interfaces 5(21): 10853-10857
Petrillo, K.G.; Wang, K.-Y.; Foster, A.C.; Foster, M.A. 2013: Highly sensitive ultrafast pulse characterization using hydrogenated amorphous silicon waveguides. Optics Express 21(25): 31229-31238
Zhang, Z.; Li, W.; Zhao, Q.; Cheng, M.; Xu, L.; Fang, X. 2014: Highly sensitive visual detection of copper (II) using water-soluble azide-functionalized gold nanoparticles and silver enhancement. Biosensors and Bioelectronics 59: 40-44
Zhang, Z.; Chen, Z.; Qu, C.; Chen, L. 2014: Highly sensitive visual detection of copper ions based on the shape-dependent LSPR spectroscopy of gold nanorods. Langmuir: the Acs Journal of Surfaces and Colloids 30(12): 3625-3630
Huang, X.; Wang, C.; Li, S.; Liu, Y.; Zhang, Z. 2014: Highly sensitive visualization of inorganic mercury in mouse neurons using a fluorescent probe. Journal of Fluorescence 24(4): 1313-1317
Saberi, R.-S.; Shahrokhian, S. 2012: Highly sensitive voltammetric determination of lamotrigine at highly oriented pyrolytic graphite electrode. Bioelectrochemistry 84: 38-43
Ensafi, A.A.; Karimi-Maleh, H.; Mallakpour, S.; Rezaei, B. 2011: Highly sensitive voltammetric sensor based on catechol-derivative-multiwall carbon nanotubes for the catalytic determination of captopril in patient human urine samples. Colloids and Surfaces. B Biointerfaces 87(2): 480-488
Jager, W.F.; Hammink, T.S.; van den Berg, O.; Grozema, F.C. 2010: Highly sensitive water-soluble fluorescent ph sensors based on the 7-amino-1-methylquinolinium chromophore. Journal of Organic Chemistry 75(7): 2169-2178
Wang, Z.; Heon Lee, J.; Lu, Y. 2008: Highly sensitive "turn-on" fluorescent sensor for Hg2+ in aqueous solution based on structure-switching DNA. Chemical Communications 45: 6005-6007
Liu, D.; Qu, W.; Chen, W.; Zhang, W.; Wang, Z.; Jiang, X. 2010: Highly sensitive, colorimetric detection of mercury(II) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature. Analytical Chemistry 82(23): 9606-9610
Branco, R.; Cristóvão, A.; Morais, P.V. 2013: Highly sensitive, highly specific whole-cell bioreporters for the detection of chromate in environmental samples. Plos one 8(1): E54005
Allsop, T.; Neal, R.; Chengbo, M.; Kalli, K.; Webb, D. 2014: Highly sensitive, localized surface plasmon resonance fiber device for environmental sensing, based upon a structured bi-metal array of nano-wires. Optics Letters 39(20): 5798-5801
Spangenberg, T.; Kishi, Y. 2010: Highly sensitive, operationally simple, cost/time effective detection of the mycolactones from the human pathogen Mycobacterium ulcerans. Chemical Communications 46(9): 1410-1412
Zhou, H.; Blackwell, J.M.; Lee, H.-B.-R.; Bent, S.F. 2013: Highly sensitive, patternable organic films at the nanoscale made by bottom-up assembly. Acs Applied Materials and Interfaces 5(9): 3691-3696
Xu, X.; Baker, H.; Williams, D.A. 2010: Highly sensitive, photon number resolving detectors mediated by phonons using delta-doped GaAs transistors. Nano Letters 10(4): 1364-1368
Edgeworth, J.A.; Jackson, G.S.; Clarke, A.R.; Weissmann, C.; Collinge, J. 2009: Highly sensitive, quantitative cell-based assay for prions adsorbed to solid surfaces. Proceedings of the National Academy of Sciences of the United States of America 106(9): 3479-3483
Ricochon, G.; Paris, C.; Girardin, M.; Muniglia, L. 2011: Highly sensitive, quick and simple quantification method for mono and disaccharides in aqueous media using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS). Journal of Chromatography. B Analytical Technologies in the Biomedical and Life Sciences 879(19): 1529-1536
Schulz, A.; Jankowski, V.; Zidek, W.; Jankowski, J. 2014: Highly sensitive, selective and rapid LC-MS method for simultaneous quantification of diadenosine polyphosphates in human plasma. Journal of Chromatography. B Analytical Technologies in the Biomedical and Life Sciences 961: 91-96
Zhang, Y.; Gao, L.; Wen, L.; Heng, L.; Song, Y. 2013: Highly sensitive, selective and reusable mercury(II) ion sensor based on a ssDNA-functionalized photonic crystal film. Physical Chemistry Chemical Physics: Pccp 15(28): 11943-11949
Zhang, J.R.; Huang, W.T.; Xie, W.Y.; Wen, T.; Luo, H.Q.; Li, N.B. 2012: Highly sensitive, selective, and rapid fluorescence Hg2+ sensor based on DNA duplexes of poly(dT) and graphene oxide. Analyst 137(14): 3300-3305
Liu, Z.; Yang, Z.; Peng, B.; Cao, C.; Zhang, C.; You, H.; Xiong, Q.; Li, Z.; Fang, J. 2014: Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins. Advanced Materials 26(15): 2431-2439
Norris, S.; White, M.; Mankan, A.K.; Lawless, M.W. 2010: Highly sensitivity adhesion molecules detection in hereditary haemochromatosis patients reveals altered expression. International Journal of Immunogenetics 37(2): 125-133
Chih, S.; Ross, H.J.; McDonald, M.A.; Isaac, D.L. 2012: Highly sensitized patients in cardiac transplantation: early outcomes from the Canadian Prioritized Organ Sharing Program. Journal of Heart and Lung Transplantation: the Official Publication of the International Society for Heart Transplantation 31(7): 780-782
Guo, W.; Yuan, J.; Dong, Q.; Wang, E. 2010: Highly sequence-dependent formation of fluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotide mutation identification. Journal of the American Chemical Society 132(3): 932-934
Iwamoto, H.; Nishi, S.; Haino, T. 2011: Highly shape-selective guest encapsulation in the precisely defined cavity of a calix[4]arene-capped metalloporphyrin. Chemical Communications 47(47): 12670-12672
Zhu, W.; Yin, A.-X.; Zhang, Y.-W.; Yan, C.-H. 2012: Highly shape-selective synthesis of monodispersed fivefold twinned platinum nanodecahedrons and nanoicosahedrons. Chemistry 18(39): 12222-12226
Zhang, J.; Thurber, A.; Hanna, C.; Punnoose, A. 2010: Highly shape-selective synthesis, silica coating, self-assembly, and magnetic hydrogen sensing of hematite nanoparticles. Langmuir: the Acs Journal of Surfaces and Colloids 26(7): 5273-5278
Terreno, E.; Barge, A.; Beltrami, L.; Cravotto, G.; Castelli, D.D.; Fedeli, F.; Jebasingh, B.; Aime, S. 2008: Highly shifted LIPOCEST agents based on the encapsulation of neutral polynuclear paramagnetic shift reagents. Chemical Communications 5: 600-602
Schmidt, R.; Nippe, N.; Strobel, K.; Masthoff, M.; Reifschneider, O.; Castelli, D.D.; Höltke, C.; Aime, S.; Karst, U.; Sunderkötter, C.; Bremer, C.; Faber, C. 2014: Highly shifted proton MR imaging: cell tracking by using direct detection of paramagnetic compounds. Radiology 272(3): 785-795
Goh, J.S.Y.; Liu, Y.; Liu, H.; Chan, K.F.; Wan, C.; Teo, G.; Zhou, X.; Xie, F.; Zhang, P.; Zhang, Y.; Song, Z. 2014: Highly sialylated recombinant human erythropoietin production in large-scale perfusion bioreactor utilizing CHO-gmt4 (JW152) with restored GnT i function. Biotechnology Journal 9(1): 100-109
Hauber, I.; Hofmann-Sieber, H.; Chemnitz, J.; Dubrau, D.; Chusainow, J.; Stucka, R.; Hartjen, P.; Schambach, A.; Ziegler, P.; Hackmann, K.; Schröck, E.; Schumacher, U.; Lindner, C.; Grundhoff, A.; Baum, C.; Manz, M.G.; Buchholz, F.; Hauber, J. 2013: Highly significant antiviral activity of HIV-1 LTR-specific tre-recombinase in humanized mice. Plos Pathogens 9(9): E1003587
Sakamoto, H.; Ishikawa, J.; Osuga, H.; Doi, K.; Wada, H. 2010: Highly silver ion selective fluorescence ionophore: fluorescent properties of polythiazaalkane derivatives bearing 8-(7-hydroxy-4-methyl)coumarinyl moiety in aqueous solution and in liquid-liquid extraction systems. Analyst 135(3): 550-558
Palacios, C.; Zbinden, M.; Pailleret, M.; Gaill, F.ço.; Lebaron, P. 2009: Highly similar prokaryotic communities of sunken wood at shallow and deep-sea sites across the oceans. Microbial Ecology 58(4): 737-752
Lang, D.M.; Zemla, A.T.; Zhou, C.L.E. 2013: Highly similar structural frames link the template tunnel and NTP entry tunnel to the exterior surface in RNA-dependent RNA polymerases. Nucleic Acids Research 41(3): 1464-1482
Cohen, J.; Lee, D.; Chauhan, V.; Vaughan, P.; Trebino, R. 2010: Highly simplified device for measuring the intensity and phase of picosecond pulses. Optics Express 18(16): 17484-17497
O'Shea, P.; Kimmel, M.; Gu, X.; Trebino, R. 2001: Highly simplified device for ultrashort-pulse measurement. Optics Letters 26(12): 932-934
Lee, S.-J.; Choi, H.-S.; Lee, M.-H. 2011: Highly sinterable calcium phosphate fabricated by using starfish bone. Journal of Nanoscience and Nanotechnology 11(2): 1815-1817
Yu, Z.; Ma, B.; Chen, M.; Wu, H.-H.; Liu, L.; Zhang, J. 2014: Highly site-selective direct C-H bond functionalization of phenols with α-aryl-α-diazoacetates and diazooxindoles via gold catalysis. Journal of the American Chemical Society 136(19): 6904-6907
Tey, L.-H.; Loveridge, E.J.; Swanwick, R.S.; Flitsch, S.L.; Allemann, R.K. 2010: Highly site-selective stability increases by glycosylation of dihydrofolate reductase. Febs Journal 277(9): 2171-2179
Sato, S.; Yoshida, K.; Kawauchi, S.; Hosoe, K.; Akutsu, Y.; Fujimoto, N.; Nawashiro, H.; Terakawa, M. 2014: Highly site-selective transvascular drug delivery by the use of nanosecond pulsed laser-induced photomechanical waves. Journal of Controlled Release: Official Journal of the Controlled Release Society 192: 228-235
Dondi, R.; Su, W.; Griffith, G.A.; Clark, G.; Burley, G.A. 2012: Highly size- and shape-controlled synthesis of silver nanoparticles via a templated Tollens reaction. Small 8(5): 770-776
Pérez-Tijerina, E.; Pinilla, M.Gracia.; Mejía-Rosales, S.; Ortiz-Méndez, U.; Torres, A.; José-Yacamán, M. 2008: Highly size-controlled synthesis of Au/Pd nanoparticles by inert-gas condensation. Faraday Discussions 138: 353-62; discussion 421-34
Kang, I.-S.; Seo, H.-S.; Kim, D.-H.; Lee, T.-Y.; Yang, J.-M.; Hwang, W.-J.; Ahn, C.W. 2010: Highly size-controlled synthesis of metal nanoclusters by inert-gas condensation for nano-devices. Journal of Nanoscience and Nanotechnology 10(5): 3667-3670
Kim, D.; Tzeng, P.; Barnett, K.J.; Yang, Y.-H.; Wilhite, B.A.; Grunlan, J.C. 2014: Highly size-selective ionically crosslinked multilayer polymer films for light gas separation. Advanced Materials 26(5): 746-751
Pang, C.; Koo, J.H.; Nguyen, A.; Caves, J.M.; Kim, M.-G.; Chortos, A.; Kim, K.; Wang, P.J.; Tok, J.B.-H.; Bao, Z. 2015: Highly skin-conformal microhairy sensor for pulse signal amplification. Advanced Materials 27(4): 634-640
Zhao, C.-H.; Zhao, Y.-H.; Pan, H.; Fu, G.-L. 2011: Highly solid-state emissive para-terphenyls laterally substituted with a diphenylamino group. Chemical Communications 47(19): 5518-5520
Hu, F.; Zhang, G.; Zhan, C.; Zhang, W.; Yan, Y.; Zhao, Y.; Fu, H.; Zhang, D. 2015: Highly solid-state emissive pyridinium-substituted tetraphenylethylene salts: emission color-tuning with counter anions and application for optical waveguides. Small 11(11): 1335-1344
Öztürk, C.; Erdoğmuş, A.; Durmuş, M.; Uğur, A.L.üt.; Kılıçarslan, F.A.; Erden, I. 2012: Highly soluble 3,4-(dimethoxyphenylthio) substituted phthalocyanines: synthesis, photophysical and photochemical studies. Spectrochimica Acta. Part a Molecular and Biomolecular Spectroscopy 86: 423-431
Xu, J-Ping.; Jia, L.; Fang, Y.; Lv, L-Ping.; Song, Z-Gang.; Ji, J. 2010: Highly soluble PEGylated pyrene-gold nanoparticles dyads for sensitive turn-on fluorescent detection of biothiols. Analyst 135(9): 2323-2327
Ebata, H.; Izawa, T.; Miyazaki, E.; Takimiya, K.; Ikeda, M.; Kuwabara, H.; Yui, T. 2007: Highly soluble [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. Journal of the American Chemical Society 129(51): 15732-15733
Margulis, G.Y.; Lim, B.; Hardin, B.E.; Unger, E.L.; Yum, J.-H.; Feckl, J.M.; Fattakhova-Rohlfing, D.; Bein, T.; Grätzel, M.; Sellinger, A.; McGehee, M.D. 2013: Highly soluble energy relay dyes for dye-sensitized solar cells. Physical Chemistry Chemical Physics: Pccp 15(27): 11306-11312
Zheng, Q.; Chen, S.; Zhang, B.; Wang, L.; Tang, C.; Katz, H.E. 2011: Highly soluble heteroheptacene: a new building block for p-type semiconducting polymers. Organic Letters 13(2): 324-327
Son, J.-H.; Ohlin, C.A.é; Casey, W.H. 2013: Highly soluble iron- and nickel-substituted decaniobates with tetramethylammonium countercations. Dalton Transactions 42(21): 7529-7533
Bag, S.S.; Pradhan, M.K.; Kundu, R.; Jana, S. 2013: Highly solvatochromic fluorescent naphthalimides: design, synthesis, photophysical properties and fluorescence switch-on sensing of ct-DNA. Bioorganic and Medicinal Chemistry Letters 23(1): 96-101
Sun, Y.; Turro, C. 2010: Highly solvent dependent luminescence from [Ru(bpy)(n)(dppp2)(3-n)](2+) (n = 0-2). Inorganic Chemistry 49(11): 5025-5032
Ballabio, C.; Guazzoni, N.ó; Comolli, R.; Tremolada, P. 2013: Highly spatially- and seasonally-resolved predictive contamination maps for persistent organic pollutants: development and validation. Science of the Total Environment 458-460: 546-554
Evans, R.D. 2013: Highly specialised services. Journal of Orthodontics 40(3): 181-182
Skaset, M. 2008: Highly specialized medicine and quality. Tidsskrift for den Norske Laegeforening: Tidsskrift for Praktisk Medicin Ny Raekke 128(10): 1162
Pointing, S.B.; Chan, Y.; Lacap, D.C.; Lau, M.C.Y.; Jurgens, J.A.; Farrell, R.L. 2009: Highly specialized microbial diversity in hyper-arid polar desert. Proceedings of the National Academy of Sciences of the United States of America 106(47): 19964-19969
Dejean, A.S.; Hedrick, S.M.; Kerdiles, Y.M. 2011: Highly specialized role of Forkhead box O transcription factors in the immune system. Antioxidants and Redox Signaling 14(4): 663-674
Chaiprasertsri, N.; Uno, Y.; Peyachoknagul, S.; Prakhongcheep, O.; Baicharoen, S.; Charernsuk, S.; Nishida, C.; Matsuda, Y.; Koga, A.; Srikulnath, K. 2013: Highly species-specific centromeric repetitive DNA sequences in lizards: molecular cytogenetic characterization of a novel family of satellite DNA sequences isolated from the water monitor lizard (Varanus salvator macromaculatus, Platynota). Journal of Heredity 104(6): 798-806
Stafford, J.H.; Hao, G.; Best, A.M.; Sun, X.; Thorpe, P.E. 2013: Highly specific PET imaging of prostate tumors in mice with an iodine-124-labeled antibody fragment that targets phosphatidylserine. Plos one 8(12): E84864
Serizawa, T.; Sawada, T.; Matsuno, H. 2007: Highly specific affinities of short peptides against synthetic polymers. Langmuir: the Acs Journal of Surfaces and Colloids 23(22): 11127-11133
Miranda-Rottmann, S.; Kozlov, A.S.; Hudspeth, A.J. 2010: Highly specific alternative splicing of transcripts encoding BK channels in the chicken's cochlea is a minor determinant of the tonotopic gradient. Molecular and Cellular Biology 30(14): 3646-3660
Oslund, R.C.; Cermak, N.; Gelb, M.H. 2008: Highly specific and broadly potent inhibitors of mammalian secreted phospholipases A2. Journal of Medicinal Chemistry 51(15): 4708-4714
Yang, M.; Peng, Z.; Ning, Y.; Chen, Y.; Zhou, Q.; Deng, L. 2013: Highly specific and cost-efficient detection of Salmonella Paratyphi a combining aptamers with single-walled carbon nanotubes. Sensors 13(5): 6865-6881
Gratz, S.J.; Ukken, F.P.; Rubinstein, C.D.; Thiede, G.; Donohue, L.K.; Cummings, A.M.; O'Connor-Giles, K.M. 2014: Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics 196(4): 961-971
Aguilera-Arreola, M.G.; González-Cardel, A.M.ía.; Tenorio, A.M.én.; Curiel-Quesada, E.; Castro-Escarpulli, G. 2014: Highly specific and efficient primers for in-house multiplex PCR detection of Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma hominis and Ureaplasma urealyticum. Bmc Research Notes 7: 433
Imirzalioglu, C.; Dahmen, H.; Hain, T.; Billion, A.; Kuenne, C.; Chakraborty, T.; Domann, E. 2011: Highly specific and quick detection of Mycobacterium avium subsp. paratuberculosis in feces and gut tissue of cattle and humans by multiple real-time PCR assays. Journal of Clinical Microbiology 49(5): 1843-1852
Aboubakr, H.; Brisset, H.; Siri, O.; Raimundo, J.-M. 2013: Highly specific and reversible fluoride sensor based on an organic semiconductor. Analytical Chemistry 85(20): 9968-9974
Huang, Y.; Zhang, Y.-L.; Xu, X.; Jiang, J.-H.; Shen, G.-L.; Yu, R.-Q. 2009: Highly specific and sensitive electrochemical genotyping via gap ligation reaction and surface hybridization detection. Journal of the American Chemical Society 131(7): 2478-2480
Palandra, J.; Finelli, A.; Zhu, M.; Masferrer, J.; Neubert, H. 2013: Highly specific and sensitive measurements of human and monkey interleukin 21 using sequential protein and tryptic peptide immunoaffinity LC-MS/MS. Analytical Chemistry 85(11): 5522-5529
Choi, J.-H.; Gaddameedhi, S.; Kim, S.-Y.; Hu, J.; Kemp, M.G.; Sancar, A. 2014: Highly specific and sensitive method for measuring nucleotide excision repair kinetics of ultraviolet photoproducts in human cells. Nucleic Acids Research 42(4): E29
Guan, W.; Duan, X.; Reed, M.A. 2014: Highly specific and sensitive non-enzymatic determination of uric acid in serum and urine by extended gate field effect transistor sensors. Biosensors and Bioelectronics 51: 225-231
Karaboga, A.S.; Planesas, J.ús.M.; Petronin, F.; Teixidó, J.; Souchet, M.; Pérez-Nueno, V.I. 2013: Highly specific and sensitive pharmacophore model for identifying CXCR4 antagonists. Comparison with docking and shape-matching virtual screening performance. Journal of Chemical Information and Modeling 53(5): 1043-1056
Tong, S.; Rombauts, L.; Onwude, J.; Marjono, B.; Wallace, E.M. 2007: Highly specific and sensitive rise in Days 14-17 pro-alphaC inhibin with clinical pregnancy after frozen embryo transfer with ovulatory cycles. Human Reproduction 22(8): 2249-2253
Wu, Y.; Xue, P.; Kang, Y.; Hui, K.M. 2013: Highly specific and ultrasensitive graphene-enhanced electrochemical detection of low-abundance tumor cells using silica nanoparticles coated with antibody-conjugated quantum dots. Analytical Chemistry 85(6): 3166-3173
Too, W.C.S.; Wong, M.T.; Few, L.L.; Konrad, M. 2010: Highly specific antibodies for co-detection of human choline kinase α1 and α2 isoforms. Plos one 5(9): E12999
Klamp, T.; Schumacher, J.; Huber, G.; Kühne, C.; Meissner, U.; Selmi, A.; Hiller, T.; Kreiter, S.; Markl, Jürgen.; Türeci, Özlem.; Sahin, U. 2011: Highly specific auto-antibodies against claudin-18 isoform 2 induced by a chimeric HBcAg virus-like particle vaccine kill tumor cells and inhibit the growth of lung metastases. Cancer Research 71(2): 516-527
Hoang, T.; Roth, U.; Kowalewski, K.; Belisle, C.; Steinert, K.; Karas, M. 2010: Highly specific capture and direct MALdi MS analysis of phosphopeptides by zirconium phosphonate on self-assembled monolayers. Analytical Chemistry 82(1): 219-228
Zou, X.; Liu, D.; Zhong, L.; Yang, B.; Lou, Y.; Hu, B.; Yin, Y. 2011: Highly specific capture and direct MALDI-MS analysis of phosphorylated peptides using novel multifunctional chitosan-GMA-IDA-Fe (III) nanosphere. Analytical and Bioanalytical Chemistry 401(4): 1251-1261
Zhang, J.; Xu, X.; Yang, X. 2012: Highly specific colorimetric recognition and sensing of sulfide with glutathione-modified gold nanoparticle probe based on an anion-for-molecule ligand exchange reaction. Analyst 137(7): 1556-1558
Richard, G.-F.; Viterbo, D.; Khanna, V.; Mosbach, V.; Castelain, L.; Dujon, B. 2014: Highly specific contractions of a single CAG/CTG trinucleotide repeat by TALEN in yeast. Plos one 9(4): E95611
Wang, C.-W.; Kapoor, R. 2010: Highly specific detection of IL-8 protein using combination tapered fiber-optic biosensor dip-probe. Proceedings of Spie--the International Society for Optical Engineering 7559: 75590v1-75590v6
Ludolfs, D.; Reinholz, M.; Schmitz, H. 2009: Highly specific detection of antibodies to tick-borne encephalitis (TBE) virus in humans using a domain IIi antigen and a sensitive immune complex (IC) ELISA. Journal of Clinical Virology: the Official Publication of the Pan American Society for Clinical Virology 45(2): 125-128
Breitbart, A.; Scharf, G.M.; Duncker, D.; Widera, C.; Gottlieb, J.; Vogel, A.; Schmidt, S.; Brandes, G.; Heuft, H.-G.; Lichtinghagen, R.; Kempf, T.; Wollert, K.C.; Bauersachs, J.; Heineke, J. 2013: Highly specific detection of myostatin prodomain by an immunoradiometric sandwich assay in serum of healthy individuals and patients. Plos one 8(11): E80454
Barbero, G.; Destefanis, P.; Procida, S.; Mandili, G.; Ulliers, D.; Ceruti, C.; Fiori, C.; Maule, M.M.; Fontana, D.; Giribaldi, G.; Turrini, F. 2008: Highly specific detection of prostate-specific antigen-positive cells in the blood of patients with prostate cancer or benign prostatic hyperplasia, using a real-time reverse-transcription-polymerase chain reaction method with improved sensitivity. Bju International 102(11): 1566-1572
Thornton, P.D.; Heise, A. 2010: Highly specific dual enzyme-mediated payload release from peptide-coated silica particles. Journal of the American Chemical Society 132(6): 2024-2028
Wan, Y.; Zhou, Y-Ge.; Poudineh, M.; Safaei, T.Saberi.; Mohamadi, R.M.; Sargent, E.H.; Kelley, S.O. 2014: Highly specific electrochemical analysis of cancer cells using multi-nanoparticle labeling. Angewandte Chemie 53(48): 13145-13149
Zhang, L.; Jiang, H.; Yao, J.; Wang, Y.; Fang, C.; Yang, P.; Lu, H. 2014: Highly specific enrichment of N-linked glycopeptides based on hydrazide functionalized soluble nanopolymers. Chemical Communications 50(8): 1027-1029
Xu, Y.; Wu, Z.; Zhang, L.; Lu, H.; Yang, P.; Webley, P.A.; Zhao, D. 2009: Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Analytical Chemistry 81(1): 503-508
Warthmann, N.; Chen, H.; Ossowski, S.; Weigel, D.; Hervé, P. 2008: Highly specific gene silencing by artificial mi RNAs in rice. Plos one 3(3): E1829
Zheng, H.; Gao, J. 2010: Highly specific heterodimerization mediated by quadrupole interactions. Angewandte Chemie 49(46): 8635-8639
Lamb, D.; Schüttelkopf, A.W.; van Aalten, D.M.F.; Brighty, D.W. 2008: Highly specific inhibition of leukaemia virus membrane fusion by interaction of peptide antagonists with a conserved region of the coiled coil of envelope. Retrovirology 5: 70
Brunger, A.T.; Jin, R.; Breidenbach, M.A. 2008: Highly specific interactions between botulinum neurotoxins and synaptic vesicle proteins. Cellular and Molecular Life Sciences: Cmls 65(15): 2296-2306
Shu, W.; Laurenson, S.; Knowles, T.P.J.; Ko Ferrigno, P.; Seshia, A.A. 2008: Highly specific label-free protein detection from lysed cells using internally referenced microcantilever sensors. Biosensors and Bioelectronics 24(2): 233-237
Hanson, E.K.; Ballantyne, J. 2013: Highly specific mRNA biomarkers for the identification of vaginal secretions in sexual assault investigations. Science and Justice: Journal of the Forensic Science Society 53(1): 14-22
Alloatti, A.és.; Uttaro, A.D. 2011: Highly specific methyl-end fatty-acid desaturases of trypanosomatids. Molecular and Biochemical Parasitology 175(2): 126-132
Pavlovic, M.; Chen, R.; Kats, A.M.; Cavallo, M.F.; Saccocio, S.; Keating, P.; Hartmann, J.X. 2007: Highly specific novel method for isolation and purification of lupus anti-DNA antibody via oligo-(dT) magnetic beads. Annals of the new York Academy of Sciences 1108: 203-217
Bumbaca, D.; Wong, A.; Drake, E.; Reyes, A.E.; Lin, B.C.; Stephan, J.-P.; Desnoyers, L.; Shen, B.-Q.; Dennis, M.S. 2011: Highly specific off-target binding identified and eliminated during the humanization of an antibody against FGF receptor 4. Mabs 3(4): 376-386
Freeston, S.L. 2012: Highly specific pancreatic cancer biomarker detection using quantum dots. Bioanalysis 4(11): 1281
Joshi, G.K.; Deitz-McElyea, S.; Johnson, M.; Mali, S.; Korc, M.; Sardar, R. 2014: Highly specific plasmonic biosensors for ultrasensitive microRNA detection in plasma from pancreatic cancer patients. Nano Letters 14(12): 6955-6963
Gliem, S.; Schild, D.; Manzini, I. 2009: Highly specific responses to amine odorants of individual olfactory receptor neurons in situ. European Journal of Neuroscience 29(12): 2315-2326
Liu, L.; Zhang, Y.; Zhang, L.; Yan, G.; Yao, J.; Yang, P.; Lu, H. 2012: Highly specific revelation of rat serum glycopeptidome by boronic acid-functionalized mesoporous silica. Analytica Chimica Acta 753: 64-72
McGregor, R.; Wu, M.-F.; Barber, G.; Ramanathan, L.; Siegel, J.M. 2011: Highly specific role of hypocretin (orexin) neurons: differential activation as a function of diurnal phase, operant reinforcement versus operant avoidance and light level. Journal of Neuroscience: the Official Journal of the Society for Neuroscience 31(43): 15455-15467
Cortines, J.R.; Motwani, T.; Vyas, A.A.; Teschke, C.M. 2014: Highly specific salt bridges govern bacteriophage P22 icosahedral capsid assembly: identification of the site in coat protein responsible for interaction with scaffolding protein. Journal of Virology 88(10): 5287-5297
Li, B.; Wang, C.; Chen, X.; Lyu, J.; Guo, S. 2013: Highly specific separation for antitumor Spiropreussione a from endophytic fungal [Preussia sp.] fermentation broth by one-step macroporous resins AB-8 treatment. Journal of Chromatography. B Analytical Technologies in the Biomedical and Life Sciences 938: 1-7
Hernández, O.; Jiménez, A.I.; Jiménez, F.; Arias, J.J.; Havel, J. 1994: Highly specific spectrophotometric method for palladium(II) determination with 3-(5'-tetrazolylazo)-2,6-Diaminotoluene in the presence of chlorides. Kinetic and equilibrium study of reactions. Talanta 41(5): 775-782
Chen, J.L.; Nedivi, E. 2013: Highly specific structural plasticity of inhibitory circuits in the adult neocortex. Neuroscientist: a Review Journal Bringing Neurobiology Neurology and Psychiatry 19(4): 384-393
Wysocka, M.; Lesner, A.; Guzow, K.; Kulczycka, J.; Łegowska, A.; Wiczk, W.ła.; Rolka, K. 2010: Highly specific substrates of proteinase 3 containing 3-(2-benzoxazol-5-yl)-l-alanine and their application for detection of this enzyme in human serum. Analytical Chemistry 82(9): 3883-3889
Gibbs, B.F.; Yasinska, I.M.; Calzolai, L.; Gilliland, D.; Sumbayev, V.V. 2014: Highly specific targeting of human leukocytes using gold nanoparticle-based biologically active conjugates. Journal of Biomedical Nanotechnology 10(7): 1259-1266
Shao, L.; Tekedereli, I.; Wang, J.; Yuca, E.; Tsang, S.; Sood, A.; Lopez-Berestein, G.; Ozpolat, B.; Ittmann, M. 2012: Highly specific targeting of the TMPRSS2/ERG fusion gene using liposomal nanovectors. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research 18(24): 6648-6657
Wang, J.; O'Toole, M.; Massey, A.; Biswas, S.; Nantz, M.; Achilefu, S.; Kang, K.A. 2011: Highly specific, NIR fluorescent contrast agent with emission controlled by gold nanoparticle. Advances in Experimental Medicine and Biology 701: 149-154
Avlonitis, N.; Debunne, M.; Aslam, T.; McDonald, N.; Haslett, C.; Dhaliwal, K.; Bradley, M. 2013: Highly specific, multi-branched fluorescent reporters for analysis of human neutrophil elastase. Organic and Biomolecular Chemistry 11(26): 4414-4418
Abuknesha, R.A.; Paleodimos, M.; Jeganathan, F. 2011: Highly specific, sensitive and rapid enzyme immunoassays for the measurement of acetaminophen in serum. Analytical and Bioanalytical Chemistry 401(7): 2195-2204
Zhang, H.; Xu, D.; Huang, Y.; Duan, X. 2011: Highly spectral dependent enhancement of upconversion emission with sputtered gold island films. Chemical Communications 47(3): 979-981
Kang, M.J.; Park, J.M.; Choi, W.S.; Lee, J.; Kwak, B.K.; Lee, J. 2010: Highly spherical and deformable chitosan microspheres for arterial embolization. Chemical and Pharmaceutical Bulletin 58(3): 288-292
Burton, J.D.; Tsymbal, E.Y. 2011: Highly spin-polarized conducting state at the interface between nonmagnetic band insulators: LaAlO3/FeS2 (001). Physical Review Letters 107(16): 166601
Venkatesh Karthik, S.; Davison, S. 2008: Highly spontaneous seroconversion in e antigen positive South Asian children with chronic hepatitis B infection. Journal of Hepatology 49(6): 1079; Author Reply 1079-80
Hong, S.-G.; Kim, H.S.; Kim, J. 2014: Highly stabilized lipase in polyaniline nanofibers for surfactant-mediated esterification of ibuprofen. Langmuir: the Acs Journal of Surfaces and Colloids 30(3): 911-915
Marcon, R.O.; Brochsztain, S. 2007: Highly stable 3,4,9,10-perylenediimide radical anions immobilized in robust zirconium phosphonate self-assembled films. Langmuir: the Acs Journal of Surfaces and Colloids 23(24): 11972-11976
Calabrese, V.; Quici, S.; Rossi, E.; Cariati, E.; Dragonetti, C.; Roberto, D.; Tordin, E.; De Angelis, F.; Fantacci, S. 2010: Highly stable 7-N,N-dibutylamino-2-azaphenanthrene and 8-N,N-dibutylamino-2-azachrysene as a new class of second order NLO-active chromophores. Chemical Communications 46(44): 8374-8376
Murai, D.; Nakazumi, T.; Fujii, S.; Komoto, Y.; Tsukagoshi, K.; Motta, C.; Kiguchi, M. 2014: Highly stable Au atomic contacts covered with benzenedithiol under ambient conditions. Physical Chemistry Chemical Physics: Pccp 16(29): 15662-15666
Saleh, M.; Lee, H.M.; Kemp, K.C.; Kim, K.S. 2014: Highly stable CO2/N2 and CO2/CH4 selectivity in hyper-cross-linked heterocyclic porous polymers. Acs Applied Materials and Interfaces 6(10): 7325-7333
Piper, D.J.E.; Barbante, G.J.; Brack, N.; Pigram, P.J.; Hogan, C.F. 2011: Highly stable ECL active films formed by the electrografting of a diazotized ruthenium complex generated in situ from the amine. Langmuir: the Acs Journal of Surfaces and Colloids 27(1): 474-480
Lu, L.; Liu, J.; Hu, Y.; Zhang, Y.; Randriamahazaka, H.; Chen, W. 2012: Highly stable air working bimorph actuator based on a graphene nanosheet/carbon nanotube hybrid electrode. Advanced Materials 24(31): 4317-4321
Han, J.; Peng, H.; Pan, J.; Wei, L.; Li, G.; Chen, C.; Xiao, L.; Lu, J.; Zhuang, L. 2013: Highly stable alkaline polymer electrolyte based on a poly(ether ether ketone) backbone. Acs Applied Materials and Interfaces 5(24): 13405-13411
Qi, C.; Zhu, Y.-J.; Zhao, X.-Y.; Lu, B.-Q.; Tang, Q.-L.; Zhao, J.; Chen, F. 2013: Highly stable amorphous calcium phosphate porous nanospheres: microwave-assisted rapid synthesis using ATP as phosphorus source and stabilizer, and their application in anticancer drug delivery. Chemistry 19(3): 981-987
Wang, D.; Subban, C.V.; Wang, H.; Rus, E.; DiSalvo, F.J.; Abruña, H.D. 2010: Highly stable and CO-tolerant Pt/Ti0.7W0.3O2 electrocatalyst for proton-exchange membrane fuel cells. Journal of the American Chemical Society 132(30): 10218-10220
Zhang, X.; Lü, S.; Gao, C.; Chen, C.; Zhang, X.; Liu, M. 2013: Highly stable and degradable multifunctional microgel for self-regulated insulin delivery under physiological conditions. Nanoscale 5(14): 6498-6506
Zhou, Y.; Yang, J.; He, T.; Shi, H.; Cheng, X.; Lu, Y. 2013: Highly stable and dispersive silver nanoparticle-graphene composites by a simple and low-energy-consuming approach and their antimicrobial activity. Small 9(20): 3445-3454
Guo, J-Feng.; Ma, B.; Yin, A.; Fan, K.; Dai, W-Lin. 2012: Highly stable and efficient Ag/AgCl@TiO2 photocatalyst: preparation, characterization, and application in the treatment of aqueous hazardous pollutants. Journal of Hazardous Materials 211-212: 77-82
Bernier, M.; Faucher, D.; Caron, N.; Vallée, R.éa. 2009: Highly stable and efficient erbium-doped 2.8 microm all fiber laser. Optics Express 17(19): 16941-16946
Danieli, E.; Perlo, J.; Blümich, B.; Casanova, F. 2013: Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies. Physical Review Letters 110(18): 180801
Lee, D.; Lee, H.; Ahn, Y.; Jeong, Y.; Lee, D.-Y.; Lee, Y. 2013: Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices. Nanoscale 5(17): 7750-7755
Xie, Z.; Wang, C.; deKrafft, K.E.; Lin, W. 2011: Highly stable and porous cross-linked polymers for efficient photocatalysis. Journal of the American Chemical Society 133(7): 2056-2059
Zhang, F.M.; Liu, B.S.; Zhang, Y.; Guo, Y.H.; Wan, Z.Y.; Subhan, F. 2012: Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas. Journal of Hazardous Materials 233-234: 219-227
Guan, C.; Wang, X.; Zhang, Q.; Fan, Z.; Zhang, H.; Fan, H.J. 2014: Highly stable and reversible lithium storage in SnO2 nanowires surface coated with a uniform hollow shell by atomic layer deposition. Nano Letters 14(8): 4852-4858
Si, P.; Kannan, P.; Guo, L.; Son, H.; Kim, D.-H. 2011: Highly stable and sensitive glucose biosensor based on covalently assembled high density au nanostructures. Biosensors and Bioelectronics 26(9): 3845-3851
Tallec, G.; Imbert, D.; Fries, P.H.; Mazzanti, M. 2010: Highly stable and soluble bis-aqua Gd, Nd, Yb complexes as potential bimodal MRI/NIR imaging agents. Dalton Transactions 39(40): 9490-9492
Makwana, B.A.; Vyas, D.J.; Bhatt, K.D.; Jain, V.K.; Agrawal, Y.K. 2015: Highly stable antibacterial silver nanoparticles as selective fluorescent sensor for Fe³⁺ ions. Spectrochimica Acta. Part A Molecular and Biomolecular Spectroscopy 134: 73-80
Pöselt, E.; Fischer, S.; Foerster, S.; Weller, H. 2009: Highly stable biocompatible inorganic nanoparticles by self-assembly of triblock-copolymer ligands. Langmuir: the Acs Journal of Surfaces and Colloids 25(24): 13906-13913
Luo, X.; Weaver, C.L.; Zhou, D.D.; Greenberg, R.; Cui, X.T. 2011: Highly stable carbon nanotube doped poly(3,4-ethylenedioxythiophene) for chronic neural stimulation. Biomaterials 32(24): 5551-5557
Ha, J.M.; Kim, H.J.; Raza, H.S.; Cho, S.O. 2013: Highly stable carbon nanotube field emitters on small metal tips against electrical arcing. Nanoscale Research Letters 8(1): 355
Wang, H.; Cobb, B.; van Breemen, A.; Gelinck, G.; Bao, Z. 2014: Highly stable carbon nanotube top-gate transistors with tunable threshold voltage. Advanced Materials 26(26): 4588-4593
Chen, S.-G.; Yu, Y.; Zhao, X.; Ma, Y.; Jiang, X.-K.; Li, Z.-T. 2011: Highly stable chiral (A)6-B supramolecular copolymers: a multivalency-based self-assembly process. Journal of the American Chemical Society 133(29): 11124-11127
Lee, J.; Jeon, C.H.; Ahn, S.J.; Ha, T.H. 2014: Highly stable colorimetric aptamer sensors for detection of ochratoxin a through optimizing the sequence with the covalent conjugation of hemin. Analyst 139(7): 1622-1627
Yu, L.; Li, C.; Xu, J.; Hao, J.; Sun, D. 2012: Highly stable concentrated nanoemulsions by the phase inversion composition method at elevated temperature. Langmuir: the Acs Journal of Surfaces and Colloids 28(41): 14547-14552
Castillo-Martínez, E.; Bieringer, M.; Shafi, S.P.; Cranswick, L.M.D.; Alario-Franco, M.Án. 2011: Highly stable cooperative distortion in a weak Jahn-Teller d2 cation: perovskite-type ScVO3 obtained by high-pressure and high-temperature transformation from bixbyite. Journal of the American Chemical Society 133(22): 8552-8563
Pachfule, P.; Kandambeth, S.; Díaz Díaz, D.; Banerjee, R. 2014: Highly stable covalent organic framework-Au nanoparticles hybrids for enhanced activity for nitrophenol reduction. Chemical Communications 50(24): 3169-3172
Sun, C.-Y.; Liu, S.-X.; Liang, D.-D.; Shao, K.-Z.; Ren, Y.-H.; Su, Z.-M. 2009: Highly stable crystalline catalysts based on a microporous metal-organic framework and polyoxometalates. Journal of the American Chemical Society 131(5): 1883-1888
Liu, Y.; Villamena, F.A.; Zweier, J.L. 2008: Highly stable dendritic trityl radicals as oxygen and pH probe. Chemical Communications 36: 4336-4338
Ho, H.P.; Leung, K.M.; Chan, K.S.; Pun, E.Y. 1998: Highly stable differential phase optical interferometer using rotating Ronchi gratings. Applied Optics 37(16): 3494-3497
Murayama, K.; Tanaka, Y.; Toda, T.; Kashida, H.; Asanuma, H. 2013: Highly stable duplex formation by artificial nucleic acids acyclic threoninol nucleic acid (aTNA) and serinol nucleic acid (SNA) with acyclic scaffolds. Chemistry 19(42): 14151-14158
Lau, G.P.S.; Tsao, H.N.; Zakeeruddin, S.M.; Grätzel, M.; Dyson, P.J. 2014: Highly stable dye-sensitized solar cells based on novel 1,2,3-triazolium ionic liquids. Acs Applied Materials and Interfaces 6(16): 13571-13577
Sun, X.; Ma, Z. 2012: Highly stable electrochemical immunosensor for carcinoembryonic antigen. Biosensors and Bioelectronics 35(1): 470-474
Kim, B.C.; Zhao, X.; Ahn, H.-K.; Kim, J.H.; Lee, H.-J.; Kim, K.W.; Nair, S.; Hsiao, E.; Jia, H.; Oh, M.-K.; Sang, B.I.; Kim, B.-S.; Kim, S.H.; Kwon, Y.; Ha, S.; Gu, M.B.; Wang, P.; Kim, J. 2011: Highly stable enzyme precipitate coatings and their electrochemical applications. Biosensors and Bioelectronics 26(5): 1980-1986
Sagis, L.M.C.; Boeriu, C.G.; Frissen, G.E.; Schols, H.A.; Wierenga, P.A. 2008: Highly stable foams from block oligomers synthesized by enzymatic reactions. Langmuir: the Acs Journal of Surfaces and Colloids 24(2): 359-361
De Gregorio, G.L.; Agosta, R.; Giannuzzi, R.; Martina, F.; De Marco, L.; Manca, M.; Gigli, G. 2012: Highly stable gel electrolytes for dye solar cells based on chemically engineered polymethacrylic hosts. Chemical Communications 48(25): 3109-3111
Lee, C.; Zhang, P. 2014: Highly stable gelatin layer-protected gold nanoparticles as surface-enhanced Raman scattering substrates. Journal of Nanoscience and Nanotechnology 14(6): 4325-4330
Yoshikawa, I.; Sawayama, J.; Araki, K. 2008: Highly stable giant supramolecular vesicles composed of 2D hydrogen-bonded sheet structures of guanosine derivatives. Angewandte Chemie 47(6): 1038-1041
Whitaker, K.R.; Scifo, D.J.; Ediger, M.D.; Ahrenberg, M.; Schick, C. 2013: Highly stable glasses of cis-decalin and cis/trans-decalin mixtures. Journal of Physical Chemistry. B 117(42): 12724-12733
Ahmad, H.; Latif, A.A.; Abdul Khudus, M.I.M.; Zulkifli, A.Z.; Zulkifli, M.Z.; Thambiratnam, K.; Harun, S.W. 2013: Highly stable graphene-assisted tunable dual-wavelength erbium-doped fiber laser. Applied Optics 52(4): 818-823
Dash, S.P.; Pasayat, S.; Bhakat, S.; Roy, S.; Dinda, R.; Tiekink, E.R.T.; Mukhopadhyay, S.; Bhutia, S.K.; Hardikar, M.R.; Joshi, B.N.; Patil, Y.P.; Nethaji, M. 2013: Highly stable hexacoordinated nonoxidovanadium(IV) complexes of sterically constrained ligands: syntheses, structure, and study of antiproliferative and insulin mimetic activity. Inorganic Chemistry 52(24): 14096-14107
Yu, H.; Jia, C.; Wu, H.; Song, G.; Jin, Y.; Ke, Y.; Liang, X. 2012: Highly stable high performance liquid chromatography stationary phase based on direct chemical modification of organic bridges in hybrid silica. Journal of Chromatography. a 1247: 63-70
Ha, T.-J.; Kiriya, D.; Chen, K.; Javey, A. 2014: Highly stable hysteresis-free carbon nanotube thin-film transistors by fluorocarbon polymer encapsulation. Acs Applied Materials and Interfaces 6(11): 8441-8446
Dawson, K.J.; Kearns, K.L.; Ediger, M.D.; Sacchetti, M.J.; Zografi, G.D. 2009: Highly stable indomethacin glasses resist uptake of water vapor. Journal of Physical Chemistry. B 113(8): 2422-2427
Yesilada, O.; Birhanli, E.; Ozmen, N.; Ercan, S. 2014: Highly stable laccase from repeated-batch culture of Funalia trogii ATCC 200800. Prikladnaia Biokhimiia i Mikrobiologiia 50(1): 65-71
Layrac, G.ér.; Destarac, M.; Gérardin, C.; Tichit, D. 2014: Highly stable layered double hydroxide colloids: a direct aqueous synthesis route from hybrid polyion complex micelles. Langmuir: the Acs Journal of Surfaces and Colloids 30(32): 9663-9671
Hu, Y.-S.; Adelhelm, P.; Smarsly, B.M.; Maier, J. 2010: Highly stable lithium storage performance in a porous carbon/silicon nanocomposite. Chemsuschem 3(2): 231-235
Kuipers, M.A.; Stasevich, T.J.; Sasaki, T.; Wilson, K.A.; Hazelwood, K.L.; McNally, J.G.; Davidson, M.W.; Gilbert, D.M. 2011: Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload. Journal of Cell Biology 192(1): 29-41
Chen, B.; Wang, S.; Zhang, Q.; Huang, Y. 2012: Highly stable magnetic multiwalled carbon nanotube composites for solid-phase extraction of linear alkylbenzene sulfonates in environmental water samples prior to high-performance liquid chromatography analysis. Analyst 137(5): 1232-1240
Kazuki, K.; Takehara, S.; Uno, N.; Imaoka, N.; Abe, S.; Takiguchi, M.; Hiramatsu, K.; Oshimura, M.; Kazuki, Y. 2013: Highly stable maintenance of a mouse artificial chromosome in human cells and mice. Biochemical and Biophysical Research Communications 442(1-2): 44-50
Akita, H.; Fujino, Y.; Doi, K.; Ohshima, T. 2011: Highly stable meso-diaminopimelate dehydrogenase from an Ureibacillus thermosphaericus strain A1 isolated from a Japanese compost: purification, characterization and sequencing. Amb Express 1(1): 43
Franking, R.A.; Landis, E.C.; Hamers, R.J. 2009: Highly stable molecular layers on nanocrystalline anatase TiO2 through photochemical grafting. Langmuir: the Acs Journal of Surfaces and Colloids 25(18): 10676-10684
Lak, A.; Dieckhoff, J.; Ludwig, F.; Scholtyssek, J.M.; Goldmann, O.; Lünsdorf, H.; Eberbeck, D.; Kornowski, A.; Kraken, M.; Litterst, F.J.; Fiege, K.; Mischnick, P.; Schilling, M. 2013: Highly stable monodisperse PEGylated iron oxide nanoparticle aqueous suspensions: a nontoxic tracer for homogeneous magnetic bioassays. Nanoscale 5(23): 11447-11455
Banerjee, A.; Theron, R.; Scott, R.W.J. 2012: Highly stable noble-metal nanoparticles in tetraalkylphosphonium ionic liquids for in situ catalysis. Chemsuschem 5(1): 109-116
Puniredd, S.R.; Assad, O.; Haick, H. 2008: Highly stable organic modification of Si(111) surfaces: towards reacting Si with further functionalities while preserving the desirable chemical properties of full Si-C atop site terminations. Journal of the American Chemical Society 130(29): 9184-9185
Puniredd, S.R.; Assad, O.; Haick, H. 2008: Highly stable organic monolayers for reacting silicon with further functionalities: the effect of the C-C bond nearest the silicon surface. Journal of the American Chemical Society 130(41): 13727-13734
Hulicova-Jurcakova, D.; Puziy, A.M.; Poddubnaya, O.I.; Suárez-García, F.; Tascón, J.M.D.; Lu, G.Q. 2009: Highly stable performance of supercapacitors from phosphorus-enriched carbons. Journal of the American Chemical Society 131(14): 5026-5027
AlOtaibi, B.; Nguyen, H.P.T.; Zhao, S.; Kibria, M.G.; Fan, S.; Mi, Z. 2013: Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode. Nano Letters 13(9): 4356-4361
Zhang, J.; Geng, J.; Zheng, G.; Dai, J.; Fu, Z. 2014: Highly stable photoresponsive complex framework formation involves unusual selective hydrogenation of a pyridine derivative. Chemical Communications 50(55): 7326-7328
Segman, S.; Lee, M.-R.; Vaiser, V.; Gellman, S.H.; Rapaport, H. 2010: Highly stable pleated-sheet secondary structure in assemblies of amphiphilic alpha/beta-peptides at the air-water interface. Angewandte Chemie 49(4): 716-719
Mičuda, M.; Doláková, E.; Straka, I.; Miková, M.; Dušek, M.; Fiurášek, J.ír.; Ježek, M. 2014: Highly stable polarization independent Mach-Zehnder interferometer. Review of Scientific Instruments 85(8): 083103
Ray, A.; Mukundan, A.; Xie, Z.; Karamchand, L.; Wang, X.; Kopelman, R. 2014: Highly stable polymer coated nano-clustered silver plates: a multimodal optical contrast agent for biomedical imaging. Nanotechnology 25(44): 445104
Yuan, D.; Lu, W.; Zhao, D.; Zhou, H.-C. 2011: Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Advanced Materials 23(32): 3723-3725
Tsang, C.K.; Kelly, T.L.; Sailor, M.J.; Li, Y.Y. 2012: Highly stable porous silicon-carbon composites as label-free optical biosensors. Acs Nano 6(12): 10546-10554
Cho, T.Joon.; MacCuspie, R.I.; Gigault, J.; Gorham, J.M.; Elliott, J.T.; Hackley, V.A. 2014: Highly stable positively charged dendron-encapsulated gold nanoparticles. Langmuir: the Acs Journal of Surfaces and Colloids 30(13): 3883-3893
Huang, H-Chang.; Hsieh, T-Eong. 2010: Highly stable precursor solution containing ZnO nanoparticles for the preparation of ZnO thin film transistors. Nanotechnology 21(29): 295707
Rahman, S.M.A.; Seki, S.; Obika, S.; Haitani, S.; Miyashita, K.; Imanishi, T. 2007: Highly stable pyrimidine-motif triplex formation at physiological pH values by a bridged nucleic acid analogue. Angewandte Chemie 46(23): 4306-4309
Ruther, R.E.; Rigsby, M.L.; Gerken, J.B.; Hogendoorn, S.R.; Landis, E.C.; Stahl, S.S.; Hamers, R.J. 2011: Highly stable redox-active molecular layers by covalent grafting to conductive diamond. Journal of the American Chemical Society 133(15): 5692-5694
Shih, A.; Zhou, W.; Qiu, J.; Yang, H.-J.; Chen, S.; Mi, Z.; Shih, I. 2010: Highly stable resistive switching on monocrystalline ZnO. Nanotechnology 21(12): 125201
Gao, C.; Lu, Z.; Liu, Y.; Zhang, Q.; Chi, M.; Cheng, Q.; Yin, Y. 2012: Highly stable silver nanoplates for surface plasmon resonance biosensing. Angewandte Chemie 51(23): 5629-5633
Du, H.; DeGrave, J.P.; Xue, F.; Liang, D.; Ning, W.; Yang, J.; Tian, M.; Zhang, Y.; Jin, S. 2014: Highly stable skyrmion state in helimagnetic MnSi nanowires. Nano Letters 14(4): 2026-2032
Xiao, J.; Wu, Q.L.; Liu, P.; Liang, Y.; Li, H.B.; Wu, M.M.; Yang, G.W. 2014: Highly stable sub-5 nm Sn₆O₄(OH)₄ nanocrystals with ultrahigh activity as advanced photocatalytic materials for photodegradation of methyl orange. Nanotechnology 25(13): 135702
Wang, D.; Shakeel, H.; Lovette, J.; Rice, G.W.; Heflin, J.R.; Agah, M. 2013: Highly stable surface functionalization of microgas chromatography columns using layer-by-layer self-assembly of silica nanoparticles. Analytical Chemistry 85(17): 8135-8141
Škeříková, V.; Urban, J.ří 2013: Highly stable surface modification of hypercrosslinked monolithic capillary columns and their application in hydrophilic interaction chromatography. Journal of Separation Science 36(17): 2806-2812
Wang, Z.; Wang, H.; Zheng, W.; Zhang, J.; Zhao, Q.; Wang, S.; Yang, Z.; Kong, D. 2011: Highly stable surface modifications of poly(3-caprolactone) (PCL) films by molecular self-assembly to promote cells adhesion and proliferation. Chemical Communications 47(31): 8901-8903
Zhang, C.; Yu, H.; Li, Y.; Fu, L.; Gao, Y.; Song, W.; Shao, Z.; Yi, B. 2013: Highly stable ternary tin-palladium-platinum catalysts supported on hydrogenated TiO2 nanotube arrays for fuel cells. Nanoscale 5(15): 6834-6841
Park, J.C.; Kim, S.; Kim, S.; Kim, C.; Song, I.; Park, Y.; Jung, U.-I.; Kim, D.H.; Lee, J.-S. 2010: Highly stable transparent amorphous oxide semiconductor thin-film transistors having double-stacked active layers. Advanced Materials 22(48): 5512-5516
Moses, J.; Huang, S.-W.; Hong, K.-H.; Mücke, O.D.; Falcão-Filho, E.L.; Benedick, A.; Ilday, F.O.; Dergachev, A.; Bolger, J.A.; Eggleton, B.J.; Kärtner, F.X. 2009: Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression. Optics Letters 34(11): 1639-1641
Bhatt, K.D.; Vyas, D.J.; Makwana, B.A.; Darjee, S.M.; Jain, V.K. 2014: Highly stable water dispersible calix[4]pyrrole octa-hydrazide protected gold nanoparticles as colorimetric and fluorometric chemosensors for selective signaling of Co(II) ions. Spectrochimica Acta. Part A Molecular and Biomolecular Spectroscopy 121: 94-100
Higashi, M.; Domen, K.; Abe, R. 2012: Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. Journal of the American Chemical Society 134(16): 6968-6971
Baquero, E.A.; Tricard, S.; Flores, J.Carlos.; de Jesús, E.; Chaudret, B. 2014: Highly stable water-soluble platinum nanoparticles stabilized by hydrophilic N-heterocyclic carbenes. Angewandte Chemie 53(48): 13220-13224
Li, N.; Leng, Y.; Hickner, M.A.; Wang, C.-Y. 2013: Highly stable, anion conductive, comb-shaped copolymers for alkaline fuel cells. Journal of the American Chemical Society 135(27): 10124-10133
de Moura, Márcia.R.; Lorevice, M.V.; Mattoso, L.H.C.; Zucolotto, V. 2011: Highly stable, edible cellulose films incorporating chitosan nanoparticles. Journal of Food Science 76(2): N25-N29
Sato, A.; Yamanaka, H.; Oe, K.; Yokoyama, I.; Yamazaki, Y.; Ebina, K. 2015: Highly stable, fluorescence-labeled heptapeptides substituted with a D-amino acid for the specific detection of oxidized low-density lipoprotein in plasma. Chemical Biology and Drug Design 85(3): 348-355
Poon, Z.; Lee, J.A.; Huang, S.; Prevost, R.J.; Hammond, P.T. 2011: Highly stable, ligand-clustered "patchy" micelle nanocarriers for systemic tumor targeting. Nanomedicine: Nanotechnology Biology and Medicine 7(2): 201-209
Anderson, V.E.; Fox, N.P.; Nettleton, D.H. 1992: Highly stable, monochromatic and tunable optical radiation source and its application to high accuracy spectrophotometry. Applied Optics 31(4): 536-545
Rastogi, L.; Kora, A.Jyothi.; J, A. 2012: Highly stable, protein capped gold nanoparticles as effective drug delivery vehicles for amino-glycosidic antibiotics. Materials Science and Engineering. C Materials for Biological Applications 32(6): 1571-1577
Qin, G.; Zhang, R.; Makarenko, B.; Kumar, A.; Rabalais, W.; López Romero, J.M.; Rico, R.; Cai, C. 2010: Highly stable, protein resistant thin films on SiC-modified silicon substrates. Chemical Communications 46(19): 3289-3291
Huang, J.-H.; Lee, K.-C. 2014: Highly stable, solution-processable phenothiazine derivative as hole collection material for organic solar cells. Acs Applied Materials and Interfaces 6(10): 7680-7685
Yun, G.; Hassan, Z.; Lee, J.; Kim, J.; Lee, N-Suk.; Kim, N.Hoon.; Baek, K.; Hwang, I.; Park, C.Gyung.; Kim, K. 2014: Highly stable, water-dispersible metal-nanoparticle-decorated polymer nanocapsules and their catalytic applications. Angewandte Chemie 53(25): 6414-6418
Oderinde, M.S.; Hunter, H.N.; Froese, R.D.J.; Organ, M.G. 2012: Highly stereo- and regioselective hydrostannylation of internal alkynes promoted by simple boric acid in air. Chemistry 18(35): 10821-10824
Huang, Z.; Negishi, E.-i. 2007: Highly stereo- and regioselective synthesis of (Z)-trisubstituted alkenes via 1-bromo-1-alkyne hydroboration-migratory insertion-Zn-promoted iodinolysis and Pd-catalyzed organozinc cross-coupling. Journal of the American Chemical Society 129(47): 14788-14792
Hencken, C.P.; Genna, D.T.; Siegler, M.A.; Posner, G.H. 2011: Highly stereocontrolled and regiocontrolled syntheses of 2,3,4-trisubstituted alkanoates and lactones. Journal of Organic Chemistry 76(12): 5149-5155
Konno, T.; Kishi, M.; Ishihara, T. 2012: Highly stereocontrolled synthesis of trans-enediynes via carbocupration of fluoroalkylated diynes. Beilstein Journal of Organic Chemistry 8: 2207-2213
Li, N.-S.; Scharf, L.; Adams, E.J.; Piccirilli, J.A. 2013: Highly stereocontrolled total synthesis of β-D-mannosyl phosphomycoketide: a natural product from Mycobacterium tuberculosis. Journal of Organic Chemistry 78(12): 5970-5986
Benson, C.L.; West, F.G. 2007: Highly stereoselective 6pi electrocyclization of bridged bicyclic 1,3,5-trienes. Organic Letters 9(13): 2545-2548