Section 54
Chapter 53,772

In vitro antioxidant and antimicrobial activities of Merremia emarginata using thio glycolic acid-capped cadmium telluride quantum dots

Rameshkumar, A.; Sivasudha, T.; Jeyadevi, R.; Sangeetha, B.; Ananth, D.A.; Aseervatham, G.S.B.; Nagarajan, N.; Renganathan, R.; Kathiravan, A.

Colloids and Surfaces. B Biointerfaces 101: 74-82


ISSN/ISBN: 1873-4367
PMID: 22796774
DOI: 10.1016/j.colsurfb.2012.05.034
Accession: 053771022

Download citation:  

This study was undertaken to evaluate the antioxidant potential of an aqueous extract from Merremia emarginata leaves because this plant has a very high flavonoid and phenol content. The in vitro antioxidant activity was measured by diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid (ABTS), superoxide anion scavenging assay and lipid peroxidation activity; the total reducing capability of the plant extract indicates that this plant is a source for natural antioxidants. Furthermore, we investigated thio glycolic acid-capped cadmium telluride quantum dots (TGA-CdTe QDs) as fluorescent probes to study the antioxidant activity of the M. emarginata extract through fluorescence quenching. The antimicrobial activity was also investigated using a disc diffusion method and fluorescence microscopy. The TGA-CdTe QDs and M. emarginata complex could provide antimicrobial activity through a reactive oxygen species pathway and/or microbial endocytosis through an electrostatic attraction. Based on our findings, we suggest that the QDs act as potential probes for the in vitro antioxidant and antimicrobial activities. In addition, their cooperative effect with the plant extract indicates that QDs could be used as nanocarriers to enhance the antimicrobial capability. Further in vivo studies on the photolabelling of antioxidants with QDs will provide insights into the mechanistic pathways of secondary metabolites against various degenerative diseases.

PDF emailed within 0-6 h: $19.90