+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Metabolism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by mitochondrion-targeted cytochrome P450 2D6: implications in Parkinson disease

Metabolism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by mitochondrion-targeted cytochrome P450 2D6: implications in Parkinson disease

Journal of Biological Chemistry 288(6): 4436-4451

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxic side product formed in the chemical synthesis of desmethylprodine opioid analgesic, which induces Parkinson disease. Monoamine oxidase B, present in the mitochondrial outer membrane of glial cells, catalyzes the oxidation of MPTP to the toxic 1-methyl-4-phenylpyridinium ion (MPP(+)), which then targets the dopaminergic neurons causing neuronal death. Here, we demonstrate that mitochondrion-targeted human cytochrome P450 2D6 (CYP2D6), supported by mitochondrial adrenodoxin and adrenodoxin reductase, can efficiently catalyze the metabolism of MPTP to MPP(+), as shown with purified enzymes and also in cells expressing mitochondrial CYP2D6. Neuro-2A cells stably expressing predominantly mitochondrion-targeted CYP2D6 were more sensitive to MPTP-mediated mitochondrial respiratory dysfunction and complex I inhibition than cells expressing predominantly endoplasmic reticulum-targeted CYP2D6. Mitochondrial CYP2D6 expressing Neuro-2A cells produced higher levels of reactive oxygen species and showed abnormal mitochondrial structures. MPTP treatment also induced mitochondrial translocation of an autophagic marker, Parkin, and a mitochondrial fission marker, Drp1, in differentiated neurons expressing mitochondrial CYP2D6. MPTP-mediated toxicity in primary dopaminergic neurons was attenuated by CYP2D6 inhibitor, quinidine, and also partly by monoamine oxidase B inhibitors deprenyl and pargyline. These studies show for the first time that dopaminergic neurons expressing mitochondrial CYP2D6 are fully capable of activating the pro-neurotoxin MPTP and inducing neuronal damage, which is effectively prevented by the CYP2D6 inhibitor quinidine.

Please choose payment method:

(PDF emailed within 0-6 h: $19.90)

Accession: 054342861

Download citation: RISBibTeXText

PMID: 23258538

DOI: 10.1074/jbc.m112.402123

Related references

Involvement of cytochrome P450 2E1 in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease. Journal of Neurochemistry 91(2): 285-298, 2004

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is N-demethylated by cytochromes P450 2D6, 1A2 and 3A4--implications for susceptibility to Parkinson's disease. Journal of Pharmacology and Experimental Therapeutics 277(2): 685-690, 1996

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine as a substrate of cytochrome P450 2D6: allosteric effects of NADPH-cytochrome P450 reductase. Biochemistry 36(15): 4461-4470, 1997

Studies on the interactions of MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) with the cytochrome P-450 enzyme system--clues to a possible aetiological factor in Parkinson's disease. Annals of the Academy of Medicine Singapore 18(1): 93-97, 1989

Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): implications for treatment and the pathogenesis of Parkinson's disease. Canadian Journal of Neurological Sciences. le Journal Canadien des Sciences Neurologiques 11(1 Suppl): 160-165, 1984

Chemically induced Parkinson's disease: intermediates in the oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to the 1-methyl-4-phenyl-pyridinium ion. Biochemical and Biophysical Research Communications 144(2): 957-964, 1987

Parkinson-like disease by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity in Macaca fascicularis: synaptosomal metabolism and action of dihydroergocriptine. Neurochemical Research 19(3): 229-236, 1994

Chronic dietary supplementation with turmeric protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-mediated neurotoxicity in vivo: implications for Parkinson's disease. British Journal of Nutrition 106(1): 63-72, 2011

Detoxification of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) by cytochrome P450 enzymes: A theoretical investigation. Journal of Inorganic Biochemistry 154: 21-28, 2016

Neurochemical and behavioral features induced by chronic low dose treatment with 1 methyl 4 phenyl 1 2 3 6 tetrahydropyridine mptp in the common marmoset implications for parkinson's disease. Neuroscience Letters 123(1): 115-118, 1991

Activation and deactivation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by cytochrome P450 enzymes and flavin-containing monooxygenases in common marmosets (Callithrix jacchus). Drug Metabolism and Disposition: the Biological Fate of Chemicals 43(5): 735-742, 2015

Effect of caffeine on the expression of cytochrome P450 1A2, adenosine A2A receptor and dopamine transporter in control and 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine treated mouse striatum. Brain Research 1283: 115-126, 2009